RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Borodin, Oleg Veniaminovich

Statistics Math-Net.Ru
Total publications: 69
Scientific articles: 68

Number of views:
This page:2893
Abstract pages:17586
Full texts:4332
References:1849
Senior Researcher
Doctor of physico-mathematical sciences
E-mail:

http://www.mathnet.ru/eng/person18494
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:borodin.oleg-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/230394

Publications in Math-Net.Ru
2019
1. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Èlektron. Mat. Izv., 16 (2019),  1334–1344  mathnet  isi
2. O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Sibirsk. Mat. Zh., 60:3 (2019),  527–536  mathnet  elib; Siberian Math. J., 60:3 (2019), 405–411  isi  scopus
3. O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019),  351–359  mathnet  elib; Siberian Math. J., 60:2 (2019), 272–278  isi  scopus
2018
4. O. V. Borodin, A. O. Ivanova, “Light 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 15 (2018),  1344–1352  mathnet  isi
5. V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Sib. Èlektron. Mat. Izv., 15 (2018),  1174–1181  mathnet  isi
6. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018),  56–64  mathnet  elib; Siberian Math. J., 59:1 (2018), 43–49  isi  scopus
2017
7. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017),  771–778  mathnet  elib; Siberian Math. J., 58:4 (2017), 600–605  isi  elib  scopus
8. O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017),  48–55  mathnet  elib; Siberian Math. J., 58:1 (2017), 37–42  isi  elib  scopus
2016
9. O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016),  584–591  mathnet  isi
10. O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016),  981–987  mathnet  elib; Siberian Math. J., 57:5 (2016), 764–768  isi  elib  scopus
11. O. V. Borodin, A. O. Ivanova, “Light and low $5$-stars in normal plane maps with minimum degree $5$”, Sibirsk. Mat. Zh., 57:3 (2016),  596–602  mathnet  mathscinet  elib; Siberian Math. J., 57:3 (2016), 470–475  isi  elib  scopus
2015
12. O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015),  982–987  mathnet  mathscinet  elib; Siberian Math. J., 56:5 (2015), 783–788  isi  elib  scopus
13. O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015),  775–789  mathnet  mathscinet  elib; Siberian Math. J., 56:4 (2015), 612–623  isi  elib  scopus
14. O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015),  338–350  mathnet  mathscinet  elib; Siberian Math. J., 56:2 (2015), 275–284  isi  elib  scopus
2014
15. O. V. Borodin, A. O. Ivanova, “The weight of edge in 3-polytopes”, Sib. Èlektron. Mat. Izv., 11 (2014),  457–463  mathnet
16. O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014),  17–24  mathnet  mathscinet; Siberian Math. J., 55:1 (2014), 12–18  isi  scopus
2011
17. O. V. Borodin, A. O. Ivanova, “2-distance 4-coloring of planar subcubic graphs”, Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:4 (2011), 535–541  scopus
18. O. V. Borodin, A. V. Kostochka, “Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$”, Sibirsk. Mat. Zh., 52:5 (2011),  1004–1010  mathnet  mathscinet; Siberian Math. J., 52:5 (2011), 796–801  isi  scopus
19. O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011),  522–541  mathnet  mathscinet; Siberian Math. J., 52:3 (2011), 411–425  isi  scopus
20. O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011),  30–38  mathnet  mathscinet; Siberian Math. J., 52:1 (2011), 23–29  isi  scopus
2010
21. O. V. Borodin, “Acyclic 4-colorability of planar graphs without 4- and 5-cycles”, Diskretn. Anal. Issled. Oper., 17:2 (2010),  20–38  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:1 (2011), 31–43  scopus
22. O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Sib. Èlektron. Mat. Izv., 7 (2010),  275–283  mathnet
2009
23. O. V. Borodin, “Acyclic 4-coloring of plane graphs without cycles of length 4 and 6”, Diskretn. Anal. Issled. Oper., 16:6 (2009),  3–11  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:4 (2010), 490–495  scopus
24. O. V. Borodin, “Acyclic 3-choosability of plane graphs without cycles of length from 4 to 12”, Diskretn. Anal. Issled. Oper., 16:5 (2009),  26–33  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:2 (2010), 158–162  scopus
25. O. V. Borodin, A. O. Ivanova, “Near-proper vertex 2-colorings of sparse graphs”, Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:1 (2010), 21–23  scopus
26. O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009),  13–16  mathnet  mathscinet
27. O. V. Borodin, A. O. Ivanova, “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$”, Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224  mathnet  mathscinet; Siberian Math. J., 50:6 (2009), 958–964  isi  scopus
2008
28. O. V. Borodin, I. G. Dmitriev, A. O. Ivanova, “Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников”, Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 3:1 (2009), 28–31  scopus
29. O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008),  417–426  mathnet  mathscinet
30. O. V. Borodin, A. O. Ivanova, “List $2$-arboricity of planar graphs with no triangles at distance less than two”, Sib. Èlektron. Mat. Izv., 5 (2008),  211–214  mathnet  mathscinet
31. O. V. Borodin, A. O. Ivanova, “Planar graphs without triangular $4$-cycles are $3$-choosable”, Sib. Èlektron. Mat. Izv., 5 (2008),  75–79  mathnet  mathscinet
2007
32. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 2:3 (2008), 317–328  scopus
33. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh, “Minimax degrees of quasiplane graphs without $4$-faces”, Sib. Èlektron. Mat. Izv., 4 (2007),  435–439  mathnet  mathscinet  zmath
34. O. V. Borodin, A. O. Ivanova, B. S. Stechkin, “Decomposing a planar graph into a forest and a subgraph of restricted maximum degree”, Sib. Èlektron. Mat. Izv., 4 (2007),  296–299  mathnet  mathscinet  zmath
2006
35. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of sparse plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 1:1 (2007), 9–17  scopus
36. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$”, Sib. Èlektron. Mat. Izv., 3 (2006),  441–450  mathnet  zmath
37. O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006),  428–440  mathnet  zmath
38. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “List $(p,q)$-coloring of sparse plane graphs”, Sib. Èlektron. Mat. Izv., 3 (2006),  355–361  mathnet  mathscinet  zmath
2005
39. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47  mathnet  mathscinet  zmath
40. O. V. Borodin, A. O. Ivanova, “An oriented colouring of planar graphs with girth at least $4$”, Sib. Èlektron. Mat. Izv., 2 (2005),  239–249  mathnet  mathscinet  zmath
41. O. V. Borodin, A. O. Ivanova, “An oriented $7$-colouring of planar graphs with girth at least $7$”, Sib. Èlektron. Mat. Izv., 2 (2005),  222–229  mathnet  mathscinet  zmath
2004
42. O. V. Borodin, A. N. Glebov, “A sufficient condition for the 3-colorability of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004),  13–29  mathnet  mathscinet  zmath
43. O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004),  129–141  mathnet  mathscinet  zmath
44. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles”, Sib. Èlektron. Mat. Izv., 1 (2004),  117–128  mathnet  mathscinet  zmath
45. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$2$-distance coloring of sparse planar graphs”, Sib. Èlektron. Mat. Izv., 1 (2004),  76–90  mathnet  mathscinet  zmath
2003
46. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003),  3–11  mathnet  mathscinet  zmath
2002
47. O. V. Borodin, “Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002),  29–39  mathnet  mathscinet  zmath
48. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002),  3–26  mathnet  mathscinet  zmath
49. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces”, Mat. Zametki, 72:1 (2002),  35–37  mathnet  mathscinet  zmath; Math. Notes, 72:1 (2002), 31–42  isi  scopus
2001
50. O. V. Borodin, A. N. Glebov, “On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  34–53  mathnet  mathscinet  zmath
51. O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “Minimal degrees and chromatic numbers of squares of planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  9–33  mathnet  mathscinet  zmath
52. O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “The structure of plane triangulations in terms of clusters and stars”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001),  15–39  mathnet  mathscinet  zmath
53. S. V. Avgustinovich, O. V. Borodin, A. È. Frid, “Distributive colorings of plane triangulations of minimum degree five”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001),  3–16  mathnet  mathscinet  zmath
2000
54. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On a structural property of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000),  5–19  mathnet  mathscinet  zmath
55. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic $k$-strong coloring of maps on surfaces”, Mat. Zametki, 67:1 (2000),  36–45  mathnet  mathscinet  zmath; Math. Notes, 67:1 (2000), 29–35  isi
1999
56. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic coloring of 1-planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999),  20–35  mathnet  mathscinet  zmath
1998
57. O. V. Borodin, D. V. Loparev, “The height of small faces in planar normal maps”, Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998),  6–17  mathnet  mathscinet  zmath
58. O. V. Borodin, D. R. Vudal, “Weight of faces in plane maps”, Mat. Zametki, 64:5 (1998),  648–657  mathnet  mathscinet  zmath; Math. Notes, 64:5 (1998), 562–570  isi
1996
59. O. V. Borodin, “Colorings and topological representations of graphs”, Diskretn. Anal. Issled. Oper., 3:4 (1996),  3–27  mathnet  mathscinet  zmath
1995
60. S. V. Avgustinovich, O. V. Borodin, “Neighborhoods of edges in normal cards”, Diskretn. Anal. Issled. Oper., 2:3 (1995),  3–9  mathnet  mathscinet  zmath
1993
61. O. V. Borodin, “Structure of neighborhoods of edges in planar graphs and simultaneous coloring of vertices, edges and faces”, Mat. Zametki, 53:5 (1993),  35–47  mathnet  mathscinet  zmath; Math. Notes, 53:5 (1993), 483–489  isi
62. O. V. Borodin, “Bidegree of graph and degeneracy number”, Mat. Zametki, 53:4 (1993),  13–20  mathnet  mathscinet  zmath; Math. Notes, 53:4 (1993), 367–372  isi
1992
63. O. V. Borodin, “A structural theorem on planar graphs and its application to coloring”, Diskr. Mat., 4:1 (1992),  60–65  mathnet  mathscinet  zmath
64. O. V. Borodin, “Minimal weight of face in plane triangulations without 4-vertices”, Mat. Zametki, 51:1 (1992),  16–19  mathnet  mathscinet  zmath; Math. Notes, 51:1 (1992), 11–13  isi
1991
65. O. V. Borodin, “Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps”, Diskr. Mat., 3:4 (1991),  24–27  mathnet  mathscinet  zmath
1990
66. O. V. Borodin, “Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs”, Mat. Zametki, 48:6 (1990),  22–28  mathnet  mathscinet  zmath; Math. Notes, 48:6 (1990), 1186–1190  isi
1989
67. O. V. Borodin, “Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs”, Mat. Zametki, 46:5 (1989),  9–12  mathnet  mathscinet  zmath; Math. Notes, 46:5 (1989), 835–837  isi
1976
68. O. V. Borodin, “A proof of Grünbaum's conjecture on the acyclic $5$-colorability of planar graphs”, Dokl. Akad. Nauk SSSR, 231:1 (1976),  18–20  mathnet  mathscinet  zmath

2010
69. S. V. Avgustinovich, O. V. Borodin, A. V. Kostochka, V. D. Mazurov, “In memory of Dmitry Germanovich Fon-Der-Flaass”, Sib. Èlektron. Mat. Izv., 7 (2010),  1–4  mathnet  mathscinet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020