Antonov, Nikolai Viktorovich

Statistics Math-Net.Ru
Total publications: 33
Scientific articles: 33

Number of views:
This page:1614
Abstract pages:7636
Full texts:2621
Antonov, Nikolai Viktorovich
Senior Researcher
Doctor of physico-mathematical sciences (2000)
Speciality: 01.04.02 (Theoretical physics)
Birth date: 24.05.1961
Phone: +7 (812) 428 45 53
Fax: +7 (812) 428 72 40
E-mail: ,
Keywords: Quantum field theory, Renormalization group, Critical phenomena, Fully developed hydrodynamical turbulence, Anomalous scaling.
UDC: 517.9, 539.12


Application of field theoretic methods to statistical physics, theory of critical phenomena, and fully developed turbulence.


1985: Graduated from the Leningrad State University, Dpt of Physics, Chair of high energy physics and elementary particles.
1985–1990: Leningrad branch of V. A. Steklov Mathematical Institute, Researcher.
1989: Ph.D. Supervisor A. N. Vasiliev.
1990–2007: Institute of Physics of the St. Petersburg State University, Researcher.
2000: Doctor of Sciences.
2007: Dpt of Physics, St. Petersburg State University, Professor.

Main publications:
  1. Антонов Н. В., Васильев А. Н., “Критическая динамика как теория поля”, ТМФ, 60:1 (1984), 59–71  mathnet
  2. Adzhemyan L. Ts., Antonov N. V., Vasil'ev A. N., “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E, 58 (1998), 1823–1835  crossref  mathscinet  adsnasa
  3. N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, J. Phys. A: Math. Gen., 39 (2006), 7825–7865  crossref  mathscinet  zmath  adsnasa
  4. N. V. Antonov and A. A. Ignatieva, “Critical behaviour of a fluid in a random shear flow: Renormalization group analysis of a simplified model”, J. Phys. A: Math. Theor., 39 (2006), 13593-13620  crossref
  5. L. Ts. Adzhemyan, N. V. Antonov et al., “Renormalization group in the infinite-dimensional turbulence: Third-order results”, J. Phys. A: Math. Theor., 41 (2008), 495002  crossref
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. N. V. Antonov, N. M. Gulitskii, M. M. Kostenko, T. Lučivjanský, “Renormalization group analysis of models of advection of a vector admixture and a tracer field by a compressible turbulent flow”, TMF, 200:3 (2019),  429–451  mathnet  elib; Theoret. and Math. Phys., 200:3 (2019), 1294–1312  isi  scopus
2. N. V. Antonov, M. Gnatich, A. S. Kapustin, T. Lučivjanský, L. Mižišin, “Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach”, TMF, 190:3 (2017),  377–390  mathnet  mathscinet  elib; Theoret. and Math. Phys., 190:3 (2017), 323–334  isi  scopus
3. N. V. Antonov, M. V. Kompaniets, N. M. Lebedev, “Critical behavior of the $O(n)$ $\phi^4$ model with an antisymmetric tensor order parameter: Three-loop approximation”, TMF, 190:2 (2017),  239–253  mathnet  mathscinet  elib; Theoret. and Math. Phys., 190:2 (2017), 204–216  isi  scopus
4. N. V. Antonov, P. I. Kakin, “Scaling in landscape erosion: Renormalization group analysis of a model with infinitely many couplings”, TMF, 190:2 (2017),  226–238  mathnet  mathscinet  elib; Theoret. and Math. Phys., 190:2 (2017), 193–203  isi  scopus
5. N. V. Antonov, P. I. Kakin, “Random interface growth in a random environment: Renormalization group analysis of a simple model”, TMF, 185:1 (2015),  37–56  mathnet  mathscinet  elib; Theoret. and Math. Phys., 185:1 (2015), 1391–1407  isi  scopus
6. N. V. Antonov, N. M. Gulitskii, “Anomalous scaling in statistical models of passively advected vector fields”, TMF, 176:1 (2013),  22–34  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 176:1 (2013), 851–860  isi  elib  scopus
7. N. V. Antonov, A. S. Kapustin, A. V. Malyshev, “Effects of turbulent transfer on critical behavior”, TMF, 169:1 (2011),  124–136  mathnet  mathscinet; Theoret. and Math. Phys., 169:1 (2011), 1470–1480  isi  scopus
8. N. V. Antonov, A. V. Malyshev, “The effect of strongly anisotropic turbulent mixing on critical behavior: Renormalization group analysis of two nonstandard systems”, TMF, 167:1 (2011),  50–77  mathnet  mathscinet; Theoret. and Math. Phys., 167:1 (2011), 444–467  isi  scopus
9. L. Ts. Adzhemyan, N. V. Antonov, P. B. Goldin, T. L. Kim, M. V. Kompaniets, “Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$”, TMF, 158:3 (2009),  460–477  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 158:3 (2009), 391–405  isi  scopus
10. N. V. Antonov, P. B. Goldin, “Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model”, TMF, 141:3 (2004),  455–468  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 141:3 (2004), 1725–1736  isi
11. N. V. Antonov, ““Toy models” of turbulent convection and the hypothesis of the local isotropy restoration”, Zap. Nauchn. Sem. POMI, 269 (2000),  79–91  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115:1 (2003), 1929–1934
12. L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion”, TMF, 120:2 (1999),  309–314  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 120:2 (1999), 1074–1078  isi
13. L. Ts. Adzhemyan, N. V. Antonov, “Renormalization group in turbulence theory: Exactly solvable Heisenberg model”, TMF, 115:2 (1998),  245–262  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 115:2 (1998), 562–574  isi
14. N. V. Antonov, A. V. Runov, “Renormalization group in the theory of the two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy”, TMF, 112:3 (1997),  417–427  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 112:3 (1997), 1131–1139  isi
15. N. V. Antonov, M. Yu. Nalimov, A. A. Udalov, “Renormalization group in the problem of the fully developed turbulence of a compresible fluid”, TMF, 110:3 (1997),  385–398  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 110:3 (1997), 305–315  isi
16. N. V. Antonov, A. N. Vasil'ev, “Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators”, TMF, 110:1 (1997),  122–136  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 110:1 (1997), 97–108  isi
17. N. V. Antonov, S. V. Borisenok, V. I. Girina, “Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier–Stokes equation”, TMF, 107:1 (1996),  47–63  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 107:1 (1996), 456–468  isi
18. N. V. Antonov, S. V. Borisenok, V. I. Girina, “Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight”, TMF, 106:1 (1996),  92–101  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 106:1 (1996), 75–83  isi
19. L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Quantum field renormalization group in the theory of fully developed turbulence”, UFN, 166:12 (1996),  1257–1284  mathnet; Phys. Usp., 39:12 (1996), 1193–1219  isi
20. N. V. Antonov, “On the infra-red asymptotic behavior of the pair correlator of the energy dissipation rate for well-developed turbulence”, Zap. Nauchn. Sem. POMI, 224 (1995),  81–86  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 88:2 (1998), 159–161
21. L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasiliev, M. M. Perekalin, “The problem of justifying Kolmogorov's conjectures in the stochastic theory of turbulence”, Zap. Nauchn. Sem. POMI, 224 (1995),  43–54  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 88:2 (1998), 134–141
22. L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim, “Composite operators, short–distance expansion and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to the Kolmogorov's scaling”, TMF, 100:3 (1994),  382–401  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 100:3 (1994), 1086–1099  isi
23. N. V. Antonov, A. N. Vasil'ev, M. M. Stepanova, “Infrared asymptotics of the Feynman propagator in a simple non-Abellian model”, TMF, 96:2 (1993),  313–320  mathnet; Theoret. and Math. Phys., 96:2 (1993), 989–993  isi
24. N. V. Antonov, A. N. Vasil'ev, A. S. Stepanenko, “Scaling function $\tau\to 0$ asymptotics of the correlation function in the $O_n-\varphi^4$ model”, TMF, 88:1 (1991),  149–152  mathnet; Theoret. and Math. Phys., 88:1 (1991), 779–781  isi
25. N. V. Antonov, “On the infrared asymptotics of the velocity-velocity correlator in the theory of the turbulence”, Zap. Nauchn. Sem. LOMI, 189 (1991),  15–23  mathnet  mathscinet  zmath; J. Soviet Math., 62:5 (1992), 2950–2955
26. N. V. Antonov, V. E. Korepin, “Critical properties of completely integrable spin models in quasicrystals”, TMF, 77:3 (1988),  402–411  mathnet  mathscinet; Theoret. and Math. Phys., 77:3 (1988), 1282–1288  isi
27. N. V. Antonov, “Propagator of Yang–Mills field in light cone gauge”, TMF, 75:3 (1988),  396–402  mathnet; Theoret. and Math. Phys., 75:3 (1988), 605–609  isi
28. N. V. Antonov, “Renormalizing approach to the theory of developed turbulence: Infrared asymptotic of scaling functions”, Zap. Nauchn. Sem. LOMI, 169 (1988),  18–28  mathnet  zmath
29. N. V. Antonov, “Quantization of Yang–Mills field in gauge with $A_0=0$”, TMF, 72:3 (1987),  384–393  mathnet  mathscinet; Theoret. and Math. Phys., 72:3 (1987), 951–958  isi
30. N. V. Antonov, “Scaling function for the velocity correlator in the theory of isotropic developed turbulence”, Zap. Nauchn. Sem. LOMI, 164 (1987),  3–9  mathnet  zmath
31. N. V. Antonov, V. E. Korepin, “Critical properties and correlation functions of the eight-vertex model on a quasicrystal”, Zap. Nauchn. Sem. LOMI, 161 (1987),  13–23  mathnet
32. N. V. Antonov, V. E. Korepin, “Cancellation of infrared divergences in quantum theory of solitons”, TMF, 64:3 (1985),  339–346  mathnet  mathscinet; Theoret. and Math. Phys., 64:3 (1985), 873–877  isi
33. N. V. Antonov, A. N. Vasil'ev, “Critical dynamics as a field theory”, TMF, 60:1 (1984),  59–71  mathnet; Theoret. and Math. Phys., 60:1 (1984), 671–679  isi

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020