RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Adler Vsevolod Eduardovich

Statistics Math-Net.Ru
Total publications: 24
Scientific articles: 23
Presentations: 4

Number of views:
This page:946
Abstract pages:7472
Full texts:2282
References:837
Adler Vsevolod Eduardovich
Doctor of physico-mathematical sciences (2010)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 14.09.1965
Website: http://adler.itp.ac.ru

Subject:

Integrable systems.


http://www.mathnet.ru/eng/person20733
http://scholar.google.com/citations?user=763IQ5MAAAAJ&hl=en
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/318902

Publications in Math-Net.Ru
1. Cartan matrices in the Toda–Darboux chain theory
A. B. Shabat, V. E. Adler
TMF, 196:1 (2018),  22–29
2. Integrable seven-point discrete equations and second-order evolution chains
V. E. Adler
TMF, 195:1 (2018),  27–43
3. Higher-Dimensional Contou-Carrère Symbol and Continuous Automorphisms
V. E. Adler
Funktsional. Anal. i Prilozhen., 50:4 (2016),  13–25
4. Set partitions and integrable hierarchies
V. E. Adler
TMF, 187:3 (2016),  455–486
5. Necessary integrability conditions for evolutionary lattice equations
V. E. Adler
TMF, 181:2 (2014),  276–295
6. Quantum tops as examples of commuting differential operators
V. E. Adler, V. G. Marikhin, A. B. Shabat
TMF, 172:3 (2012),  355–374
7. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
V. E. Adler, A. I. Bobenko, Yu. B. Suris
Funktsional. Anal. i Prilozhen., 43:1 (2009),  3–21
8. Model equation of the theory of solitons
V. E. Adler, A. B. Shabat
TMF, 153:1 (2007),  29–45
9. On the One Class of Hyperbolic Systems
Vsevolod E. Adler, Alexey B. Shabat
SIGMA, 2 (2006), 093
10. Dressing chain for the acoustic spectral problem
V. E. Adler, A. B. Shabat
TMF, 149:1 (2006),  32–46
11. Lagrangian Chains and Canonical Bäcklund Transformations
V. E. Adler, V. G. Marikhin, A. B. Shabat
TMF, 129:2 (2001),  163–183
12. Legendre Transforms on a Triangular Lattice
V. E. Adler
Funktsional. Anal. i Prilozhen., 34:1 (2000),  1–11
13. Symmetry approach to the integrability problem
V. E. Adler, A. B. Shabat, R. I. Yamilov
TMF, 125:3 (2000),  355–424
14. Discretizations of the Landau–Lifshits equation
V. E. Adler
TMF, 124:1 (2000),  48–61
15. Discrete analogues of the Liouville equation
V. E. Adler, S. Ya. Startsev
TMF, 121:2 (1999),  271–284
16. First integrals of generalized Toda chains
V. E. Adler, A. B. Shabat
TMF, 115:3 (1998),  349–357
17. Boundary Conditions for Integrable Lattices
V. E. Adler, I. T. Habibullin
Funktsional. Anal. i Prilozhen., 31:2 (1997),  1–14
18. Generalized Legendre transformations
V. E. Adler, A. B. Shabat
TMF, 112:2 (1997),  179–194
19. On the one class of the Toda chains
V. E. Adler, A. B. Shabat
TMF, 111:3 (1997),  323–334
20. Boundary value problem for the KdV equation on a half-line
V. E. Adler, I. T. Habibullin, A. B. Shabat
TMF, 110:1 (1997),  98–113
21. A modification of Crum's method
V. E. Adler
TMF, 101:3 (1994),  323–330
22. Recuttings of Polygons
V. E. Adler
Funktsional. Anal. i Prilozhen., 27:2 (1993),  79–82
23. Lie-algebraic approach to nonlocal symmetries of integrable systems
V. E. Adler
TMF, 89:3 (1991),  323–336

24. Alexander Petrovich Veselov (on his 60th birthday)
V. E. Adler, Yu. Yu. Berest, V. M. Buchstaber, P. G. Grinevich, B. A. Dubrovin, I. M. Krichever, S. P. Novikov, A. N. Sergeev, M. V. Feigin, J. Felder, E. V. Ferapontov, O. A. Chalykh, P. I. Etingof
Uspekhi Mat. Nauk, 71:6(432) (2016),  172–188

Presentations in Math-Net.Ru
1. Разбиения множеств и интегрируемые иерархии
V. E. Adler
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
October 21, 2015 18:30
2. О классификации отображений Янга-Бакстера на $\mathbb CP^1\times\mathbb CP^1$
V. E. Adler
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 31, 2010 18:30
3. Касательное отображение и связанные с ним интегрируемые уравнения
V. E. Adler
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
October 14, 2009 18:30
4. О некоторых интегрируемых разностных уравнениях
V. E. Adler
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 30, 2005

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018