Korobkov Mikhail Vyacheslavovich

Statistics Math-Net.Ru
Total publications: 16
Scientific articles: 16
Cited articles: 14
Citations in Math-Net.Ru: 45
Presentations: 1

Number of views:
This page:943
Abstract pages:2765
Full texts:674
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. The flux problem for the Navier–Stokes equations
M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo
Uspekhi Mat. Nauk, 69:6(420) (2014),  115–176
2. A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains
M. V. Korobkov
Mat. Tr., 12:2 (2009),  52–96
3. Properties of $C^1$-smooth mappings with one-dimensional gradient range
M. V. Korobkov
Sibirsk. Mat. Zh., 50:5 (2009),  1105–1122
4. Necessary and sufficient conditions for unique determination of plane domains
M. V. Korobkov
Sibirsk. Mat. Zh., 49:3 (2008),  548–567
5. An example of a $C^1$-smooth function whose gradient range is an arc with no tangent at any point
M. V. Korobkov
Sibirsk. Mat. Zh., 49:1 (2008),  134–144
6. Properties of the $C^1$-smooth functions with nowhere dense gradient range
M. V. Korobkov
Sibirsk. Mat. Zh., 48:6 (2007),  1272–1284
7. Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function
M. V. Korobkov, E. Yu. Panov
Sibirsk. Mat. Zh., 48:4 (2007),  789–810
8. Isentropic solutions of quasilinear equations of the first order
M. V. Korobkov, E. Yu. Panov
Mat. Sb., 197:5 (2006),  99–124
9. An analog of Sard's theorem for $C^1$-smooth functions of two variables
M. V. Korobkov
Sibirsk. Mat. Zh., 47:5 (2006),  1083–1091
10. Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs
A. P. Kopylov, M. V. Korobkov, S. P. Ponomarev
Sibirsk. Mat. Zh., 44:1 (2003),  120–131
11. Stability in the $C$-norm and $W^1_\infty$ of classes of Lipschitz functions of one variable
M. V. Korobkov
Sibirsk. Mat. Zh., 43:5 (2002),  1026–1045
12. Stability of classes of affine mappings
A. A. Egorov, M. V. Korobkov
Sibirsk. Mat. Zh., 42:6 (2001),  1259–1277
13. A generalization of the Lagrange mean value theorem to the case of vector-valued mappings
M. V. Korobkov
Sibirsk. Mat. Zh., 42:2 (2001),  349–353
14. Stability of classes of Lipschitz mappings, the Darboux theorem, and quasiconvex sets
A. A. Egorov, M. V. Korobkov
Sibirsk. Mat. Zh., 41:5 (2000),  1046–1059
15. On stability of classes of lipschitz mappings generated by compact sets of the space of linear mappings
M. V. Korobkov
Sibirsk. Mat. Zh., 41:4 (2000),  792–810
16. On a generalization of the Darboux theorem to the multidimensional case
M. V. Korobkov
Sibirsk. Mat. Zh., 41:1 (2000),  118–133

Presentations in Math-Net.Ru
1. The Liouville theorem for the steady Navier Stokes problem in axially symmetric 3D spatial case
The International Conference "Geometric Control Theory and Analysis on Metric Structures"
August 8, 2014 11:00

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2016