RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Korobkov Mikhail Vyacheslavovich

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15
Citations to the author: 43
Cited articles: 13

Number of views:
This page:560
Abstract pages:1938
Full texts:408
References:33
E-mail:

http://www.mathnet.ru/eng/person21343
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=651360

Publications in Math-Net.Ru
1. A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains
M. V. Korobkov
Mat. Tr., 12:2 (2009),  52–96
2. Properties of $C^1$-smooth mappings with one-dimensional gradient range
M. V. Korobkov
Sibirsk. Mat. Zh., 50:5 (2009),  1105–1122
3. Necessary and sufficient conditions for unique determination of plane domains
M. V. Korobkov
Sibirsk. Mat. Zh., 49:3 (2008),  548–567
4. An example of a $C^1$-smooth function whose gradient range is an arc with no tangent at any point
M. V. Korobkov
Sibirsk. Mat. Zh., 49:1 (2008),  134–144
5. Properties of the $C^1$-smooth functions with nowhere dense gradient range
M. V. Korobkov
Sibirsk. Mat. Zh., 48:6 (2007),  1272–1284
6. Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function
M. V. Korobkov, E. Yu. Panov
Sibirsk. Mat. Zh., 48:4 (2007),  789–810
7. Isentropic solutions of quasilinear equations of the first order
M. V. Korobkov, E. Yu. Panov
Mat. Sb., 197:5 (2006),  99–124
8. An analog of Sard's theorem for $C^1$-smooth functions of two variables
M. V. Korobkov
Sibirsk. Mat. Zh., 47:5 (2006),  1083–1091
9. Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs
A. P. Kopylov, M. V. Korobkov, S. P. Ponomarev
Sibirsk. Mat. Zh., 44:1 (2003),  120–131
10. Stability in the $C$-norm and $W^1_\infty$ of classes of Lipschitz functions of one variable
M. V. Korobkov
Sibirsk. Mat. Zh., 43:5 (2002),  1026–1045
11. Stability of classes of affine mappings
A. A. Egorov, M. V. Korobkov
Sibirsk. Mat. Zh., 42:6 (2001),  1259–1277
12. A generalization of the Lagrange mean value theorem to the case of vector-valued mappings
M. V. Korobkov
Sibirsk. Mat. Zh., 42:2 (2001),  349–353
13. Stability of classes of Lipschitz mappings, the Darboux theorem, and quasiconvex sets
A. A. Egorov, M. V. Korobkov
Sibirsk. Mat. Zh., 41:5 (2000),  1046–1059
14. On stability of classes of lipschitz mappings generated by compact sets of the space of linear mappings
M. V. Korobkov
Sibirsk. Mat. Zh., 41:4 (2000),  792–810
15. On a generalization of the Darboux theorem to the multidimensional case
M. V. Korobkov
Sibirsk. Mat. Zh., 41:1 (2000),  118–133

Organisations
 
Contact us:
 Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014