Peller, Vladimir Vsevolodovich

Total publications: 109 (108)
in MathSciNet: 97 (97)
in zbMATH: 89 (89)
in Web of Science: 56 (56)
in Scopus: 39 (39)
Cited articles: 87
Citations in Math-Net.Ru: 225
Citations in Web of Science: 541
Citations in Scopus: 360
Presentations: 4

Number of views:
This page:2539
Abstract pages:7474
Full texts:2048
Peller, Vladimir Vsevolodovich
Doctor of physico-mathematical sciences
Keywords: self-adjoint operators; normal operators; Hankel operators; Toeplitz operators; trace formulae; Schatten - von Neumann classes; operator Lipschitz functions
UDC: 513, 513.8, 513.881, 517.5, 517.53, 517.948, 517.98, 519.28, 517.51


operator theory; perturbation theory; Hankel and Toeplitz operators; multiple operator integrals; stationary processes

Main publications:
  1. V.V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37Ц51
  2. V.V. Peller, “Operatory Gankelya klassa S_p i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov”, Matem. sb., 113(155):4 (1980), 538Ц581
  3. V.V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003
  4. A.B. Aleksandrov and V.V. Peller, “Operator HölderЦZygmund functions”, Advances in Math, 224 (2010), 910Ц966
  5. V.V. Peller, “The LifshitsЦKrein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207Ц5215
List of publications on Google Scholar
List of publications on ZentralBlatt

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |

1. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed pairs of noncommuting contractions”, Izv. RAN. Ser. Mat. (to appear)  mathnet

2. M.M. Malamud, H. Neidhardt, V.V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276, (2019), 1575–1621  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 3)
3. A.B. Aleksandrov, V.V. Peller, “Dissipative operators and operator Lipschitz functions”, Proc. Amer. Math. Soc., 147:5 (2019) , 2081-2093  crossref  zmath  isi  scopus (cited: 1)
4. V.V. Peller, “Functions of commuting contractions under perturbation”, Math. Nachr., 292 (2019) , 1151 - 1160  crossref  zmath  isi  scopus
5. A. B. Aleksandrov, V. V. Peller, D. S. Potapov, “On a Trace Formula for Functions of Noncommuting Operators”, Math. Notes, 106:4 (2019), 481–487  mathnet  crossref  crossref  isi  elib  scopus

6. V. V. Peller, “An elementary approach to operator Lipschitz type estimates”, Tribute to Victor Havin: 50 Years with Hardy Spaces, 261, Birkhäuser, Basel, 2018, 395–416.  crossref  mathscinet  zmath  scopus
7. V. V. Peller, “Functions of triples of noncommuting self-adjoint operators under perturbations of class $\boldsymbol{S_p}$”, Proc. Amer. Math. Society, 146:4 (2018), 1699-1711  crossref  mathscinet  zmath  isi  scopus

8. A. B. Aleksandrov, V. V. Peller, “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bulletin London Math. Soc., 49 (2017), 463Ц479  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 3)
9. M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203  mathnet  crossref  crossref  isi (cited: 3)  elib  scopus (cited: 4)
10. M. M. Malamud, H. Neidhardt, V. V. Peller, “A trace formula for functions of contractions and analytic operator Lipschitz functions”, C. R. Math. Acad. Sci. Paris, 355 (2017), 806Ц811  crossref  mathscinet  isi (cited: 3)  scopus (cited: 3)

11. A. B. Aleksandrov, V. V. Peller, “Krein's trace formula for unitary operators and operator Lipschitz functions”, Funct. Anal. Appl., 50:3 (2016), 167–175  mathnet  crossref  crossref  mathscinet  mathscinet  isi (cited: 6)  elib  scopus (cited: 6)
12. A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 15)  elib  elib  scopus (cited: 15)
13. V. V. Peller, “Comments on the paper N.J. Kalton and C. Le Merdy “Solution of a problem of Peller concerning similarity””, Nigel J. Kalton Selecta, V. 1, Contemporary Mathematicians, Birkhäuser, Basel, 2016, 335–338
14. V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6 (2016), 15–88  crossref  mathscinet  zmath  isi (cited: 9)  scopus (cited: 12)
15. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1Ц-52  crossref  mathscinet  zmath  isi (cited: 5)
16. A. B. Aleksandrov, V. V. Peller, “Functions of almost commuting operators and an extension of the Helton–Howe trace formula”, J. Funct. Anal., 271 (2016), 3300–3322  crossref  mathscinet  zmath  isi (cited: 2)
17. V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215  crossref  mathscinet  zmath  isi (cited: 8)

18. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of perturbed noncommuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 209-Ц214  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 6)
19. A. B. Aleksandrov, V. V. Peller, “Almost commuting functions of almost commuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 583–588  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 4)
20. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators”, C.R. Acad. Sci. Paris, Sér. I, 353 (2015), 723–728  crossref  mathscinet  zmath

21. F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266 (2014), 5398Ц-5428  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 11)

22. V. V. Peller, “Utilization of technology for mathematical talks”, Notices of the AMS, 60:2 (2013), 235–238

23. A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105 (2012), 821-Ц851  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 6)
24. V. V. Peller, “Selected problems in perturbation theory”, Topics in complex analysis and operator theory, Contemp. Math., 561, Amer. Math. Soc., Providence, RI, 2012, 67Ц90  crossref  mathscinet  zmath  isi (cited: 11)
25. F. L. Nazarov, V. V. Peller, “Functions of perturbed tuples of self-adjoint operators”, C.R. Acad. Sci. Paris, Sér. I, 350 (2012), 349–354  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 2)
26. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238  mathnet  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 7)

27. A. B. Aleksandrov, V. V. Peller, “Trace formulae for perturbations of class $\boldsymbol{S}_m$”, J. Spectral Theory,, 1 (2011), 1–26  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 11)
28. A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of normal operators under perturbation”, Advances in Math., 226 (2011), 5216–5251  crossref  mathscinet  zmath  isi (cited: 23)  scopus (cited: 26)
29. A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261 (2011), 2741-Ц2796  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 11)

30. A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Advances in Math., 224 (2010), 910–966  crossref  mathscinet  zmath  isi (cited: 27)  scopus (cited: 28)
31. A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\boldsymbol{S}_p$”, J. Funct. Anal., 258 (2010), 3675–3724  crossref  mathscinet  zmath  isi (cited: 24)  scopus (cited: 23)
32. V. V. Peller, “The behavior of functions of operators under perturbations”, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., 207, Birkhäuser, Basel, 2010, 287Ц324  crossref  mathscinet  zmath  isi (cited: 5)
33. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59 (2010), 1451Ц1490  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 11)
34. A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of perturbed normal operators”, C.R. Acad. Sci. Paris, Sér. I, 348 (2010), 553–558  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 4)

35. V. V. Peller, “Analytic approximation of matrix functions and dual extremal functions”, Proc. Amer. Math. Soc., 137 (2009), 205–210  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
36. F. L. Nazarov, L. Baratchart, V. V. Peller, “Analytic approximation of matrix functions in $L^p$”, J. Approx. Theory, 158 (2009), 242-278  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 5)
37. V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 109Ц131  crossref  mathscinet  zmath
38. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 483–488  crossref  mathscinet  zmath  isi (cited: 18)  scopus (cited: 15)
39. F. L. Nazarov, V. V. Peller, “Lipschitz functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 857–862  crossref  mathscinet  zmath  isi (cited: 14)  scopus (cited: 13)

40. V. V. Peller, V. I. Vasyunin, “Analytic approximation of rational matrix functions”, Indiana Univ. Math. J., 56 (2007), 1913–1937  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
41. V. V. Peller, “On S. Mazur's problems 8 and 88 from the Scottish Book”, Stud. Math., 180 (2007), 191–198  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 2)

42. V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233 (2006), 515–544  crossref  mathscinet  zmath  isi (cited: 40)
43. St. Petersburg Math. J., 17:3 (2006), 493–510  mathnet  crossref  mathscinet  zmath

44. V. V. Peller, S. R. Treil, “Very badly approximable matrix functions}”, Selecta Math., 11 (2005), 127–154  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 5)
45. V. V. Peller, “An extension of the Koplienko–Neidhardt trace formulae”, J. Funct. Anal., 221 (2005), 456–481  crossref  mathscinet  zmath  isi (cited: 25)
46. V. V. Peller, Operatory Gankelya i ikh prilozheniya, Sovremennaya matematika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005 , 1026 pp.

47. A. B. Aleksandrov, V. V. Peller, “Distorted Hankel operators”, Indiana Univ. Math. J., 53 (2004), 925–940  crossref  mathscinet  zmath  isi (cited: 1)  scopus

48. V. V. Peller, Hankel Operators and their Applications, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 2003 , 784 pp.  crossref  mathscinet  zmath

49. A. B. Aleksandrov, V. V. Peller, “Hankel and Toeplitz-Schur multipliers”, Math. Ann., 324 (2002), 277–327  crossref  mathscinet  zmath  isi (cited: 11)  scopus (cited: 12)
50. A. B. Aleksandrov, S. Janson, V. V. Peller, R. Rochberg, “An interesting class of operators with unusual Schatten–von Neumann behavior”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 61–149  mathscinet  zmath

51. R. B. Alexeev, V. V. Peller, “Unitary interpolants and factorization indices of matrix functions”, J. Funct. Anal., 179 (2001), 43-65  crossref  mathscinet  zmath  isi
52. R. B. Alexeev, V. V. Peller, “Invariance properties of thematic factorizations of matrix functions”, J. Funct. Anal., 179 (2001), 309-332  crossref  mathscinet  zmath  isi (cited: 1)

53. V. V. Peller, “Regularity conditions for vectorial stationary processes”, Operator Theory: Advances and Applications, 113, Birkhäuser, Basel, 2000, 287-301  mathscinet  zmath
54. R. B. Alexeev, V. V. Peller, “Badly approximable matrix functions and canonical factorizations”, Indiana Univ. Math. J., 49 (2000), 1247–1285  crossref  mathscinet  zmath  isi (cited: 3)

55. V. V. Peller, “An excursion into the theory of Hankel operators”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 65–120  mathscinet  zmath
56. V. V. Peller, “Factorization and approximation problems for matrix functions”, J. Amer. Math. Soc., 11 (1998), 751-770  crossref  mathscinet  zmath  isi (cited: 4)
57. V. V. Peller, “Hereditary properties of solutions of the four block problem”, Indiana Univ. Math. J., 47 (1998), 177-197  crossref  mathscinet  zmath  isi (cited: 1)

58. V. V. Peller, S. R. Treil, “Approximation by analytic matrix functions. The four-block problem”, J. Funct. Anal., 148 (1997), 191-228  crossref  mathscinet  zmath  isi (cited: 12)
59. V. V. Peller, N. J.Young, “Continuity properties of best analytic approximations”, J. Reine und Angew. Math., 483 (1997), 1-22  crossref  mathscinet  zmath

60. V. V. Peller, N. J.Young, “Superoptimal approximation by meromorphic matrix functions”, Math. Proc. Camb. Phil. Soc., 119 (1996), 497-511  mathscinet  zmath
61. A. B. Aleksandrov, V. V. Peller, “Hankel operators and similarity to a contraction”, Int. Math. Res. Notices, 6 (1996), 263-275  mathscinet  zmath

62. A. M. Megretskii, V. V. Peller, S. R. Treil, “The inverse spectral problem for self-adjoint Hankel operators”, Acta Math., 174 (1995), 241-309  crossref  mathscinet  isi (cited: 27)  scopus (cited: 27)
63. V. V. Peller, N. J.Young, “Construction of superoptimal approximation”, Math. Control Signals Systems, 8 (1995), 497-511  crossref  mathscinet  isi (cited: 5)  scopus (cited: 6)
64. V. V. Peller, “Approximation by analytic operator-valued functions”, Harmonic Analysis and Operor Theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 431-438  mathscinet  zmath
65. V. V. Peller, S. R. Treil, “Superoptimal singular values and indices of infinite matrix functions”, Ind. Univ. Math. J., 44 (1995), 243-255  crossref  mathscinet  zmath

66. V. V. Peller, N. J.Young, “Superoptimal analytic approximations of matrix functions”, J. Funct. Anal., 120 (1994), 300-343  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 10)
67. V. V. Peller, N. J.Young, “Superoptimal singular values and indices of matrix functions”, Int. Eq. Oper. Theory, 20 (1994), 350-363  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 10)

68. V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112 (1993), 325-345  crossref  mathscinet  zmath  isi (cited: 10)
69. V. V. Peller, “Invariant subspaces of Toeplitz operators with piecewise continuous symbols”, Proc. Amer. Math. Soc., 119 (1993), 171-178  mathscinet  zmath  isi (cited: 2)
70. A. M. Megretskii, V. V. Peller, S. R. Treil, “Le problème inverse pour les opérateurs de Hankel”, Comptes Rendus Acad. Sci, Paris, Séries I, 317 (1993), 343-346  mathscinet  zmath

71. V. V. Peller, “Boundedness properties of the operators of best approximations by meromorphic functions”, Arkiv för Mat., 30 (1992), 331-343  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 7)

72. A. L. Vol'berg, V. V. Peller, D. V. Yakubovich, “A brief excursion into the theory of hyponormal operators”, Leningrad Math. J., 2:2 (1991), 211–243  mathnet  mathscinet  zmath
73. V. V. Peller, “Hankel operators and continuity properties of best approximation operators”, Leningrad Math. J., 2:1 (1991), 139–160  mathnet  mathscinet  zmath

74. V. V. Peller, “Hankel operators and multivariate stationary processes”, Operator theory: operator algebras and applications, Part 1, Proc. Sympos. Pure Math. (Durham, NH, 1988), 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, 357-371  mathscinet  zmath
75. V. V. Peller, “Hankel operators in the perturbation theory of unbounded selfadjoint operators”, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Misha Cotlar, Lecture Notes in Pure and Appl. Math.,, 122, Marcel Dekker, Inc., New York, 1990, 529-544  mathscinet  zmath

76. V. V. Peller, “When is a function of a Toeplitz operator close to a Toeplitz operator?”, Operator Theory, 42, Birkhäuser, Basel, 1989, 59-85  crossref  mathscinet  zmath

77. V. V. Peller, “Smoothness of Schmidt functions of smooth Hankel operators”, Function spaces and applications (Lund 1986), Lect. Notes Math., 1302, Springer-Verlag, Berlin, 1988, 237-246  crossref  mathscinet  zmath
78. V. V. Peller, “Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes”, Proc. Amer. Math. Soc., 104 (1988), 479-486  mathscinet  zmath  isi (cited: 4)

79. V. V. Peller, “Rational approximation in $L^p$ and Faber transforms”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, “Nauka”, Leningrad. Otdel., Leningrad, 1987, 70–75  mathnet
80. V. V. Peller, “For which $f$ does $A-B\in\boldsymbol{S}_p$ imply that $f(A)-f(B)\in\boldsymbol{S}_p$?”, Operator Theory, 24, Birkhäuser, Basel, 1987, 289-294  mathscinet  zmath
81. V. V. Peller, “Spectrum, similarity, and invariant subspaces of Toeplitz operators”, Math. USSR-Izv., 29:1 (1987), 133–144  mathnet  crossref  mathscinet  zmath

82. V. V. Peller, S .V. Khrushchev, “Hankel operators of Schatten – von Neumann class $\boldsymbol{S}_p$ and their applications to stationary processes and best approximations”: N. K. Nikolskii, Treatise on the shift operator, Springer-Verlag, Berlin, 1986, 359-454

83. V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123  mathnet  crossref  mathscinet  zmath  isi (cited: 79)

84. V. V. Peller, “A remark on interpolation in spaces of vector functions”, J. Soviet Math., 37:5 (1987), 1357–1358  mathnet  crossref  mathscinet  zmath

85. V. V. Peller, “Hankel Schur multipliers and multipliers of $H^1$”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 113–119  mathnet  mathscinet  zmath
86. V.V. Peller, “Metricheskie svoistva usrednyayuschego proektora na mnozhestvo gankelevykh operatorov”, DAN SSSR, 278 (1984), 275-281  mathnet  mathscinet  zmath
87. V. V. Peller, “Estimates of functions of a Hilbert space operator, similarity to a contraction, and related function algebras”, 199 problems of linear and complex analysis, Lect. Notes in Math., 1043, Springer - Verlag,, Berlin, 1984, 199 - 204
88. V. V. Peller, “Estimates of operator polynomials in the Schatten – von Neumann classes $\boldsymbol{S}_{p}$”, 199 problems in linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 205-208
89. S. V. Khrushchev, V. V. Peller, “Moduli of Hankel operators, Past and Future”, 199 problems of real and complex analysis, Lect. Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 92-97
90. V. V. Peller, “Iterates of Toeplitz operators”, 199 problems of linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 269-270
91. V. V. Peller, “Nuclear Hankel operators acting between Hardy classes”, Operator Theory, 14, Birkhäuser, Basel, 1984, 213-220  mathscinet  zmath
92. V. V. Peller, “Metric properties of an averaging projector onto the set of Hankel matrices”, Dokl. Akad. Nauk SSSR, 278:2 (1984), 275–281  mathnet  mathscinet  zmath

93. V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494  mathnet  crossref  mathscinet  zmath

94. V. V. Peller, “Invariant subspaces for Toeplitz operators”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, “Nauka”, Leningrad. Otdel., Leningrad, 1983, 170–179  mathnet  mathscinet  zmath
95. V.V. Peller, “Continuity properties of the averaging projection onto the set of Hankel matrices”, J. Funct. Anal., 53 (1983), 64-73  crossref  mathscinet  zmath

96. V. V. Peller, S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes”, Russian Math. Surveys, 37:1 (1982), 61–144  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 51)

97. V. V. Peller, “Rational approximation and smoothness of functions”, J. Soviet Math., 36:3 (1987), 391–398  mathnet  crossref  mathscinet  zmath

98. V.V. Peller, “Estimates of functions of power bounded operators on Hilbert space”, J. Oper. Theory, 7 (1982), 341-372  mathscinet  zmath
99. V.V. Peller, “Vectorial Hankel operators and related operators of the Schatten–von Neumann class ${\frak S}_{p}$”, Int. Equat. Oper. Theory, 5 (1982), 244-272  crossref  mathscinet  zmath  scopus (cited: 48)

100. V. V. Peller, “Analogue of J. von Neumann's inequality, isometric dilation of contractions and approximation by isometries in spaces of measurable functions”, Proc. Steklov Inst. Math., 155 (1983), 101–145  mathnet  mathscinet  zmath

101. V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479  mathnet  crossref  mathscinet  zmath

102. V. V. Peller, “Gladkie gankelevy operatory i ikh prilozheniya (idealy ${\frak S}_p$, klassy Besova, sluchainye protsessy)”, DAN SSSR, 252:1 (1980), 43–48  mathnet (cited: 4)  mathscinet  mathscinet  zmath

103. V. V. Peller, “Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators”, Math. Notes, 25:6 (1979), 464–471  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
104. V. V. Peller, “Applications of ultraproducts in operator theory. A simple proof of E. Bishop's theorem”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, “Nauka”, Leningrad. Otdel., Leningrad, 1979, 230–240  mathnet  mathscinet  zmath

105. V. V. Peller, “Approximations by isometries and V. I. Matsaev's hypothesis for absolute contractions of the space $L^p$”, Funct. Anal. Appl., 12:1 (1978), 29–38  mathnet  crossref  mathscinet  zmath

106. V. V. Peller, “14.4. Estimation of operator polynomials in Schatten–von Neumann classes”, J. Soviet Math., 26:5 (1984), 2167–2168  mathnet  crossref

107. V.V. Peller, “L'inégalité de von Neumann, la dilatation isométrique et l'approximation par isométries dans $L^{p}$”, C.R. de l'Académie des Sciences de Paris, sér. A,, 278 (1978), 311-314  mathscinet  zmath

108. V. V. Peller, “Estimates of operator polynomials on the space $L^p$ with respect to the multiplier norm”, J. Soviet Math., 16:3 (1981), 1139–1149  mathnet  crossref  mathscinet  zmath

109. V.V. Peller, “Analog neravenstva Dzh. fon Neimana dlya prostranstva $L^p$”, DAN SSSR, 231:3 (1976), 539–542  mathnet (cited: 1)  mathscinet  mathscinet  zmath

Presentations in Math-Net.Ru
1. –ешение задачи  рейна и абсолютна€ непрерывность спектрального сдвига
V. V. Peller
Seminar on Theory of Functions of Real Variables
May 11, 2018 18:30
2. ‘ункции возмущЄнных некоммутирующих операторов
V. V. Peller
Seminar on Operator Theory and Function Theory
January 19, 2015 17:30
3. ѕреподавание математики в —Ўј
V. V. Peller
Meetings of the St. Petersburg Mathematical Society
June 3, 2014 18:00
4. ‘ормулы следов при возмущени€х операторами класса Ўаттена – фон Ќоймана $S_m$
V. V. Peller
Seminar on Operator Theory and Function Theory
December 20, 2010 17:30

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020