RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Bolotin Sergey Vladimirovich

Total publications: 85
Scientific articles: 80
in MathSciNet: 79
in zbMATH: 65
in Web of Science: 37
in Scopus: 43
Cited articles: 70
Citations in Math-Net.Ru: 38
Citations in MathSciNet (by Sep 2017): 464
Citations in Web of Science: 255
Citations in Scopus: 358
Presentations: 6

Number of views:
This page:3518
Abstract pages:3328
Full texts:610
References:198
Corresponding member of RAS
Professor
Doctor of physico-mathematical sciences
E-mail: ,
Keywords: Hamiltonian system, variational methods.
UDC: 531.01, 517.974

Subject:

Dynamical systems of classical mechanics.

   
Main publications:
  1. Bolotin S., “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2006), 343–371  crossref  mathscinet  adsnasa
  2. Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063  crossref  mathscinet  zmath  adsnasa
  3. Bolotin S., Negrini P., Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system, In preparation
  4. Bolotin S. V., MacKay R. S., “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75  crossref  mathscinet  zmath  adsnasa
  5. Bolotin S. V., Treschev D. V., “Hill's formula”, Uspekhi Mat. Nauk, 65:2 (2010), 3–70  mathnet  mathscinet  zmath; English transl.: Russian Math. Surveys, 65:2 (2010), 191–257  crossref  mathscinet  zmath  adsnasa

http://www.mathnet.ru/eng/person22874
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:bolotin.sergey-v|bolotin.sergej-v
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=198814
http://elibrary.ru/author_items.asp?authorid=6415
http://www.researcherid.com/rid/Q-3646-2016
http://www.scopus.com/authid/detail.url?authorId=57189615367
https://www.researchgate.net/profile/S_Bolotin

Full list of publications:
| by years | by types | by times cited | scientific publications | common list |


1. S. Bolotin, D. Treschev, “Unbounded growth of energy in nonautonomous Hamiltonian systems”, Nonlinearity, 12:2 (1999), 365–388  crossref  mathscinet (cited: 33)  zmath  adsnasa  isi (cited: 45)  elib (cited: 30)  scopus (cited: 41)
2. S. V. Bolotin, “Libratsionnye dvizheniya naturalnykh dinamicheskikh si stem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1978, no. 6, 72–77  mathscinet (cited: 38)  zmath  adsnasa
3. S. V. Bolotin, “Homoclinic orbits in invariant tori of Hamiltonian systems”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 21–90  mathscinet (cited: 34)
4. S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412  crossref  mathscinet (cited: 18)  zmath  elib (cited: 27)  scopus (cited: 27)
5. S. V. Bolotin, V. V. Kozlov, “Libration in systems with many degrees of freedom”, J. Appl. Math. Mech., 42:2 (1978), 256–261  crossref  mathscinet  zmath  isi (cited: 12)  scopus (cited: 23)
6. S. V. Bolotin, R. S. Mackay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75  crossref  mathscinet (cited: 12)  zmath  adsnasa  isi (cited: 25)  elib (cited: 20)  scopus (cited: 25)
7. S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029  crossref  mathscinet (cited: 17)  zmath  adsnasa  isi (cited: 25)  elib (cited: 23)  scopus (cited: 24)
8. S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Differential Equations, 148:2 (1998), 364–387  crossref  mathscinet (cited: 19)  zmath  isi (cited: 21)  elib (cited: 17)  scopus (cited: 24)
9. S. V. Bolotin, “Suschestvovanie gomoklinicheskikh dvizhenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 6, 98–103  mathscinet (cited: 20)  zmath
10. S. V. Bolotin, “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 3, 65–68  mathscinet (cited: 16)
11. S. Bolotin, P. Negrini, “A variational criterion for nonintegrability”, Russian J. Math. Phys., 5:4 (1997), 415–436  mathscinet (cited: 10)  zmath  isi (cited: 6)  elib (cited: 13)  scopus (cited: 14)
12. S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a Hamiltonian system on a torus”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:3 (1998), 541–570  mathscinet (cited: 12)  zmath
13. S. V. Bolotin, “Heteroclinic chains of skew product Hamiltonian systems”, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999, 13–25  mathscinet (cited: 1)  zmath  isi (cited: 11)
14. S. Bolotin, R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 94:4 (2006), 433–449  crossref  mathscinet (cited: 4)  zmath  adsnasa  isi (cited: 10)  elib (cited: 9)  scopus (cited: 11)
15. S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  elib (cited: 2)  scopus (cited: 8)
16. V. V. Kozlov, S. V. Bolotin, “Ob asimptoticheskikh resheniyakh uravnenii dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 4, 84–89  mathscinet (cited: 10)  zmath  adsnasa
17. S. V. Bolotin, T. V. Popova, “On the motion of a mechanical system inside a rolling ball”, Regul. Chaotic Dyn., 18:1-2 (2013), 159–165  mathnet (cited: 8)  crossref  mathscinet (cited: 7)  zmath  zmath  isi (cited: 7)  elib (cited: 9)  scopus (cited: 7)
18. S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063  crossref  mathscinet (cited: 7)  zmath  adsnasa  isi (cited: 9)  elib (cited: 5)  scopus (cited: 9)
19. S. V. Bolotin, “Infinite number of homoclinic orbits to hyperbolic invariant tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:2 (2000), 139–156  crossref  mathscinet (cited: 8)  zmath  elib (cited: 9)  scopus (cited: 10)
20. S. Bolotin, “Variational criteria for nonintegrability and chaos in Hamiltonian systems”, Hamiltonian mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179  mathscinet (cited: 9)
21. S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  elib  scopus (cited: 7)
22. S. V. Bolotin, P. Negrini, “Regularization and topological entropy for the spatial $n$-center problem”, Ergodic Theory Dynam. Systems, 21:2 (2001), 383–399  crossref  mathscinet (cited: 8)  zmath  elib  scopus (cited: 11)
23. S. V. Bolotin, D. V. Treschev, “Hill's formula”, Russian Math. Surveys, 65:2 (2010), 191–257  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  elib (cited: 5)  elib (cited: 5)  scopus (cited: 5)
24. S. Bolotin, “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260  crossref  mathscinet (cited: 6)  zmath  elib (cited: 7)  scopus (cited: 12)
25. S. V. Bolotin, P. Negrini, “Chaotic behavior in the 3-center problem”, J. Differential Equations, 190:2 (2003), 539–558  crossref  mathscinet (cited: 4)  zmath  isi (cited: 7)  scopus (cited: 7)
26. S. V. Bolotin, “Symbolic dynamics near minimal hyperbolic invariant tori of Lagrangian systems”, Nonlinearity, 14:5 (2001), 1123–1140  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 7)  elib (cited: 7)  scopus (cited: 7)
27. S. Bolotin, “Homoclinic trajectories of invariant sets of Hamiltonian systems”, NoDEA Nonlinear Differential Equations Appl., 4:3 (1997), 359–389  crossref  mathscinet (cited: 7)  zmath
28. S. V. Bolotin, “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 2, 33–36  mathscinet (cited: 7)
29. S. V. Bolotin, “O pervykh integralakh sistem s giroskopicheskimi silami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 6, 75–82  mathscinet (cited: 7)  zmath  adsnasa
30. S. Bolotin, P. H. Rabinowitz, “A note on heteroclinic solutions of mountain pass type for a class of nonlinear elliptic PDE's”, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006, 105–114  crossref  mathscinet (cited: 6)  zmath
31. S. Bolotin, “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2005), 343–371  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 6)  elib (cited: 5)  scopus (cited: 9)
32. S. Bolotin, A. Delshams, R. Ramírez-Ros, “Persistence of homoclinic orbits for billiards and twist maps”, Nonlinearity, 17:4 (2004), 1153–1177  crossref  mathscinet (cited: 6)  zmath  adsnasa  isi (cited: 6)  elib (cited: 5)  scopus (cited: 6)
33. S. Bolotin, P. H. Rabinowitz, “Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 103–128  mathnet  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  scopus (cited: 4)
34. S. Bolotin, P. Negrini, “Variational approach to second species periodic solutions of Poincaré three-body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 , arXiv: 1104.2288  mathnet  crossref  mathscinet (cited: 3)  zmath  isi (cited: 5)  elib (cited: 3)  scopus (cited: 6)
35. S. Bolotin, P. H. Rabinowitz, “On the multiplicity of periodic solutions of mountain pass type for a class of semilinear PDE's”, J. Fixed Point Theory Appl., 2:2 (2007), 313–331  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 5)
36. S. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892  crossref  mathscinet (cited: 5)  zmath  elib (cited: 2)  scopus (cited: 7)
37. M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields”, Ann. Mat. Pura Appl. (4), 174 (1998), 253–275  crossref  mathscinet (cited: 4)  zmath  elib (cited: 5)  scopus (cited: 6)
38. S. V. Bolotin, “Ob opredelitele Khilla periodicheskoi traektorii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 3, 30–34  mathscinet (cited: 5)  zmath  adsnasa
39. S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570  mathnet (cited: 4)  crossref  mathscinet (cited: 3)  zmath  isi (cited: 3)  elib (cited: 4)  scopus (cited: 3)
40. S. V. Bolotin, P. H. Rabinowitz, “Heteroclinic geodesics for a class of manifolds with symmetry”, Regul. Chaotic Dyn., 3:4 (1998), 49–62  crossref  mathscinet (cited: 4)  zmath  elib (cited: 4)  scopus (cited: 4)
41. M. L. Bertotti, S. V. Bolotin, “A variational approach for homoclinics in almost periodic Hamiltonian systems”, Comm. Appl. Nonlinear Anal., 2:4 (1995), 43–57  mathscinet (cited: 4)  zmath
42. S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288  mathscinet (cited: 4)  zmath
43. S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260  crossref  mathscinet  isi (cited: 2)  scopus (cited: 6)
44. S. Bolotin, P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800  mathnet (cited: 3)  crossref  mathscinet (cited: 1)  zmath  isi (cited: 3)  elib (cited: 1)  scopus (cited: 3)
45. Sergey V. Bolotin, Tatiana V. Popova, “On the motion of a mechanical system inside a rolling ball”, Nelin. Dinam., 9:1 (2013), 51–58  mathnet
46. S. V. Bolotin, P. H. Rabinowitz, “Some geometrical conditions for the existence of chaotic geodesics on a torus”, Ergodic Theory Dynam. Systems, 22:5 (2002), 1407–1428  crossref  mathscinet (cited: 3)  zmath  isi (cited: 3)  elib (cited: 2)  scopus (cited: 4)
47. M. L. Bertotti, S. V. Bolotin, “On the influence of the kinetic energy on the stability of equilibria of natural Lagrangian systems”, Arch. Ration. Mech. Anal., 152:1 (2000), 65–79  crossref  mathscinet (cited: 2)  zmath  isi (cited: 1)  elib (cited: 3)  scopus (cited: 3)
48. S. V. Bolotin, P. H. Rabinowitz, “Minimal heteroclinic geodesics for the $n$-torus”, Calc. Var. Partial Differential Equations, 9:2 (1999), 125–139  crossref  mathscinet (cited: 3)  zmath  isi (cited: 3)  scopus (cited: 3)
49. S. V. Bolotin, “Variational methods for constructing chaotic motions in the dynamics of a rigid body”, J. Appl. Math. Mech., 56:2 (1992), 198–205  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 3)
50. S. V. Bolotin, “Motions that are doubly asymptotic to invariant tori in the theory of the perturbations of Hamiltonian systems”, J. Appl. Math. Mech., 54:3 (1990), 412–417  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
51. S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii i usloviya integriruemo sti gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 1, 55–63  mathscinet (cited: 3)  zmath  adsnasa
52. S. V. Bolotin, “O pervykh integralakh sistem s uprugimi otrazheniyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 6, 42–45  mathscinet (cited: 3)  zmath
53. S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 3)
54. M. L. Bertotti, S. V. Bolotin, “Chaotic trajectories for natural systems on a torus”, Discrete Contin. Dyn. Syst., 9:5 (2003), 1343–1357  crossref  mathscinet (cited: 2)  zmath  elib (cited: 1)  scopus (cited: 2)
55. S. V. Bolotin, V. V. Kozlov, “Symmetry fields of geodesic flows”, Russian J. Math. Phys., 3:3 (1995), 279–295  mathscinet (cited: 2)  zmath
56. S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444  crossref  mathscinet (cited: 2)  zmath  elib  scopus (cited: 5)
57. M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of quasiperiodic Lagrangian systems”, Differential Integral Equations, 8:7 (1995), 1733–1760  mathscinet (cited: 2)  zmath
58. S. V. Bolotin, “Periodic solutions of systems with gyroscopic forces”, J. Appl. Math. Mech., 51:4 (1987), 535–537  crossref  mathscinet  zmath  isi  scopus (cited: 2)
59. S. V. Bolotin, “Zamechanie o metode Rausa i gipoteze Gertsa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 5, 51–53  mathscinet (cited: 2)  zmath
60. S. V. Bolotin, V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russian Math. Surveys, 72:3 (2017), 451–478  mathnet  crossref  crossref  mathscinet  elib
61. S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687  mathnet  crossref  crossref  isi  elib  scopus (cited: 1)
62. S. V. Bolotin, “Zadacha optimalnogo upravleniya kacheniem shara s rotorami”, Nelineinaya dinam., 8:4 (2012), 837–852  mathnet  elib (cited: 1)
63. S. Bolotin, P. H. Rabinowitz, “A note on hybrid heteroclinic solutions for a class of semilinear elliptic PDEs”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22:2 (2011), 151–160  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)
64. S. Bolotin, “Shadowing chains of collision orbits for the elliptic 3-body problem”, SPT 2004 – Symmetry and perturbation theory, World Sci. Publ., Hackensack, NJ, 2005, 51–58  crossref  mathscinet (cited: 1)  zmath
65. S. Bolotin, A. Delshams, Yu. Fedorov, R. Ramírez-Ros, “Bi-asymptotic billiard orbits inside perturbed ellipsoids”, Progress in nonlinear science (Nizhny Novgorod, 2001), v. 1, RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 48–62  mathscinet (cited: 1)
66. M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8:2 (1997), 93–100  mathscinet (cited: 1)  zmath  scopus
67. S. Bolotin, “Homoclinic trajectories of time dependent Hamiltonian systems”, Variational and local methods in the study of Hamiltonian systems (Trieste, 1994), World Sci. Publ., River Edge, NJ, 1995, 1–16  mathscinet (cited: 1)  zmath
68. S. V. Bolotin, “Invariant sets of Hamiltonian systems and variational methods”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1169–1178  crossref  mathscinet (cited: 1)  zmath
69. S. V. Bolotin, P. Negrini, “Asimptoticheskie traektorii giroskopicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1993, no. 6, 66–75  mathscinet (cited: 1)  zmath
70. S. V. Bolotin, “Homoclinic trajectories to minimal tori of Lagrangian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 6, 34–41  mathscinet (cited: 1)
71. Sergey V. Bolotin, “Degenerate Billiards in Celestial Mechanics”, Regul. Chaotic Dyn., 22:1 (2017), 27–53  mathnet  crossref  mathscinet  isi  scopus
72. S. V. Bolotin, V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib  scopus
73. S. V. Bolotin, R. S. MacKay, “Isochronous oscillations”, Localization and energy transfer in nonlinear systems, eds. L. Vazquez, R. S. MacKay, M.-P. Zorzano, World Sci., 2003, 217–224  crossref
74. M. L. Bertotti, S. V. Bolotin, “Kinetic energy and Lyapunov stability of equilibria of natural Lagrangian systems”, International Conference on Differential Equations (Berlin, 1999), v. 1, 2, World Sci. Publ., River Edge, NJ, 2000, 1155–1157  mathscinet  zmath
75. S. V. Bolotin, “Connecting orbits of Hamiltonian systems”, Nonlinear functional analysis and applications to differential equations (Trieste, 1997), World Sci. Publ., River Edge, NJ, 1998, 36–59  mathscinet  zmath
76. M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of almost periodic Hamiltonian systems”, International Conference on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998, 272–276  mathscinet  zmath
77. S. V. Bolotin, “On supports of minimal invariant measures of Hamiltonian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1995, no. 6, 38–45  mathscinet  zmath
78. S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii minimalnykh geodezicheskikh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 1, 92–96  mathscinet
79. S. V. Bolotin, “The splitting of asymptotic surfaces”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), Izd-vo MGU, M., 1986, 52–53  mathscinet
80. S. V. Bolotin, “Uslovie neintegriruemosti po Liuvillyu gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 58–64  mathscinet
81. S. V. Bolotin, A. A. Gonchar, S. P. Konovalov, E. F. Mishchenko, Yu. S. Osipov, V. A. Sadovnichii, A. G. Sergeev, Ya. V. Tatarinov, D. V. Treschev, L. D. Faddeev, “Valerii Vasil'evich Kozlov has turned 60 years old”, Russian Math. Surveys, 65:2 (2010), 389–395  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
82. S. V. Bolotin, A. V. Borisov, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery Vasilievich Kozlov on his 60th birthday”, Regul. Chaotic Dyn., 15:4-5 (2010), 419–424  crossref  mathscinet  zmath  isi
83. A. V. Borisov, S. V. Bolotin, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery V. Kozlov: On the sixtieth birthday”, Nelin. Dinam., 6:3 (2010), 461–488  mathnet  elib
84. S. V. Bolotin, A. V. Karapetyan, E. I. Kugushev, D. V. Treschev, Teoreticheskaya mekhanika, Izd-vo «Akademiya», Moskva, 2010 , 432 pp.
85. S. V. Bolotin, “Letter to the editors: “Variational methods for constructing chaotic motions in the dynamics of a rigid body””, J. Appl. Math. Mech., 56:6 (1992), 959  crossref  mathscinet  isi  scopus

Presentations in Math-Net.Ru
1. Сингулярности потенциала и интегрируемость в гамильтоновых системах с двумя степенями свободы
S. V. Bolotin
Seminar of the Department of Mechanics
January 30, 2017 12:00
2. Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system
S. V. Bolotin
International Conference on Differential Equations and Dynamical Systems
July 5, 2014 16:50
3. Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system
S. V. Bolotin
Globus Seminar
June 5, 2014 15:40   
4. Symbolic dynamics of almost collision orbits in the three-body problem
S. V. Bolotin
Steklov Mathematical Institute Seminar
October 16, 2008 16:00   
5. Символическая динамика орбит задачи 3-х тел, близких к столкновениям
S. V. Bolotin
Meetings of the Moscow Mathematical Society
October 31, 2006
6. Орбиты, близкие к столкновениям в задаче трех тел
S. V. Bolotin
Seminar of the Department of Differential Equations, Steklov Mathematical Institute of RAS
April 20, 2005

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017