RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Parovik, Roman Ivanovich

Statistics Math-Net.Ru
Total publications: 39
Scientific articles: 39

Number of views:
This page:1351
Abstract pages:4484
Full texts:1536
References:1305
Parovik, Roman Ivanovich

Associate professor
Candidate of physico-mathematical sciences (2009)
Speciality: 05.13.18 (Mathematical modelling, calculating methods, and the program systems)
Birth date: 22.02.1984
Phone: +7 (924)7926209
E-mail:
Website: http://www.famous-scientists.ru/14876
Keywords: return problems, fractional derivatives, density of a stream.
UDC: 517.958, 550.348, 550.338, 517.98
MSC: 26A33,34A08,35R11,33F05,37N30

Subject:

Generalized one-dimensional model for mass transfer of radon in ground and it exhalation in the surface layer of the atmosphere.

   
Main publications:
  1. Parovik R.I., Shevtsov B.M., Firstov P.P., “Model perenosa radona v rezhime superdiffuzii vo fraktalnoi srede”, Doklady AMAN, 10:2 (2008), 79-85
  2. Parovik R.I., Shevtsov B.M., “Protsessy perenosa radona v sredakh s fraktalnoi strukturoi”, Matematicheskoe modelirovanie, 21:8 (2009), 30-36  mathnet
  3. Parovik R.I., “Zadacha Koshi dlya nelokalnogo uravneniya diffuzii-advektsii radona vo fraktalnoi srede”, Vestnik SamGTU. Seriya. Fiziko-matematicheskie nauki, 20:2 (2010), 127-132  crossref
  4. Parovik R.I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, International Journal of Communications, Network and System Sciences, 6:3 (2013), 134–138  crossref
  5. Parovik R.I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429–435  crossref
  6. Makarov D.V., Parovik R.I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S6 (2016)
  7. Parovik R., “On a credit oscillatory system with the inclusion of stick-slip”, E3S Web of Conferences, 7 (2016), 00018  crossref
  8. Parovik R.I., “An algorithm for computing the Mittag-Leffler type function in the Maple symbolic mathematics package”, International Journal of Soft Computing, 11:7 (2016), 498–502
  9. Parovik R.I., “Radon transport model into a porous ground layer of finite capacity”, E3S WEB OF CONFERENCES, 20 (2017), 03004  crossref

http://www.mathnet.ru/eng/person32149
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:parovik.roman-ivanovich
https://mathscinet.ams.org/mathscinet/MRAuthorID/Parovik+R+I
http://elibrary.ru/author_items.asp?spin=4295-6894
http://orcid.org/0000-0002-1576-1860
http://www.researcherid.com/rid/F-1624-2014
http://www.scopus.com/authid/detail.url?authorId=44661594200
https://www.researchgate.net/profile/Roman_Parovik
Full list of publications: Download file (98 kB)

Publications in Math-Net.Ru
2019
1. E. R. Novikovа, R. I. Parovik, “Study points of rest hereditarity dynamic systems Van der Pol-Duffing”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 26:1 (2019),  71–77  mathnet  elib
2. E. A. Gafurova, Y. L. Michaylov, Y. V. Grushko, R. I. Parovik, I. A. Kashutina, “Mathematical model of dynamics of small enterprises with account of memory effects”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 26:1 (2019),  46–53  mathnet  elib
3. R. I. Parovik, “The existence of chaotic regimes of the fractional analogue of the Duffing-type oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  378–393  mathnet  elib
2018
4. R. I. Parovik, “On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 154 (2018),  89–98  mathnet  mathscinet
5. V. A. Kim, R. I. Parovik, “Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, 3(23),  98–105  mathnet  elib
6. R. I. Parovik, “Stability of some dynamic systems hereditarity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, 2(22),  8–19  mathnet  elib
7. R. I. Parovik, “Numerical analysis of the Cauchy problem for a wide class fractal oscillators”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, 1(21),  93–116  mathnet  elib
8. R. I. Parovik, “Chaotic regimes of a fractal nonlinear oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018),  364–379  mathnet  zmath  elib
9. R. I. Parovik, “Mathematical model of a wide class memory oscillators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:2 (2018),  108–122  mathnet  elib
2017
10. R. I. Parovik, “Existence and uniqueness of the Cauchy problem for a wide class of ereditary oscillators”, Meždunar. nauč.-issled. žurn., 2017, 10-3(64),  112–115  mathnet
11. R. I. Parovik, “Mathematical modelling of hereditarity Airy oscillator with friction”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017),  138–148  mathnet  elib
2016
12. R. I. Parovik, “On a hereditarity vibrating system with allowance for the effects stick-slip”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, 4(15),  30–35  mathnet  mathscinet  elib
2015
13. R. I. Parovik, “Mathematical modeling of oscillator hereditarity”, Computer Research and Modeling, 7:5 (2015),  1001–1021  mathnet
14. G. M. Vodinchar, O. K. Zhdanova, L. D. Ostroverhaya, R. I. Parovik, A. S. Perezhogin, O. V. Sheremet'eva, T. P. Yakovleva, “Solutions of mathematical olympiad «Vitus Bering - 2015»”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, 2(11),  96–101  mathnet  elib; Bulletin KRASEC. Phys. & Math. Sci., 11:2 (2015), 93–98
15. R. I. Parovik, “Finite-difference scheme for fractal oscillator with a variable fractional order”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, 2(11),  88–95  mathnet  elib; Bulletin KRASEC. Phys. & Math. Sci., 11:2 (2015), 85–92
16. R. I. Parovik, “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, 1(10),  18–24  mathnet  elib; Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 16–21
17. T. S. Kumykov, R. I. Parovik, “Mathematical modeling of changes in the charge cloud droplets in a fractal environment”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, 1(10),  12–17  mathnet  elib; Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 11–15
2014
18. R. I. Parovik, “Numerical analysis some oscillation equations with fractional order derivatives”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2014, 2(9),  30–35  mathnet  elib; Bulletin KRASEC. Phys. & Math. Sci., 9:2 (2014), 34–38
19. R. I. Parovik, “On the numerical solution of equations fractal oscillator with variable order fractional of time”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2014, 1(8),  60–65  mathnet  elib
2013
20. R. I. Parovik, “Model subdiffusion radon in fractal porous medium”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, 2(7),  46–51  mathnet  elib
21. R. I. Parovik, P. P. Firstov, “Phase analysis of time series of geophysical fields”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, 1(6),  23–29  mathnet  elib
22. R. I. Parovik, “Modeling of choice leadership high school optimum decisions agreed upon with driving with managed solutions its affiliates”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, 1(6),  5–11  mathnet  elib
2012
23. R. I. Parovik, “Calculation specific functions of Mittag-Leffler in the computer mathematics Maple”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, 2(5),  51–61  mathnet  elib
24. V. V. Samuta, V. A. Strelova, R. I. Parovik, “Nonlocal model of neoclassical economic growth Solow”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, 2(5),  37–41  mathnet  elib
25. Ya. E. Shpilko, A. A. Solomko, R. I. Parovik, “Parametrization Samuelson equation model for Evans fixing, equilibrium price of the same product market”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, 2(5),  33–36  mathnet  elib
26. R. I. Parovik, “Charts Strutt-Ince for generalized Mathieu equation”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, 1(4),  24–30  mathnet  elib
27. R. I. Parovik, “Model radioactive radon decay”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, 1(4),  18–23  mathnet  elib
2011
28. R. I. Parovik, P. P. Firstov, E. O. Makarov, “Mathematical modeling of fractal dimension geomediumand”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, 2(3),  42–49  mathnet  elib
29. R. I. Parovik, “Generalized equations of Mathieu”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, 2(3),  12–17  mathnet  elib
30. V. S. Yakovleva, R. I. Parovik, “Numerical solution of of diffusion–advection equation of radon transport in many-layered geological media”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, 1(2),  46–56  mathnet  elib
31. R. I. Parovik, “Solution nonlocal equations anomalous diffusion-advection radon in system soil-atmosphere”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, 1(2),  38–45  mathnet  elib
2010
32. R. I. Parovik, “Nonlocal model of diffusion-advection radon in ground-atmosphere”, Matem. Mod., 22:9 (2010),  95–106  mathnet  mathscinet
33. R. I. Parovik, “Об одном решении нелокального уравнения нестационарной диффузии-адвекции радона в системе "грунт – атмосфера"”, Matem. Mod. Kraev. Zadachi, 3 (2010),  233–236  mathnet
34. R. I. Parovik, “Model for unsteady of diffusion-advection of radon in soil-atmosphere”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2010, 1(1),  39–45  mathnet  elib
35. R. I. Parovik, “The method of Green's function for one differential equation of a fractional order”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2010, 1(1),  17–23  mathnet  elib
36. R. I. Parovik, “Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010),  127–132  mathnet
2009
37. R. I. Parovik, B. M. Shevtsov, “A Radon transfer processes in fracttional structure medium”, Matem. Mod., 21:8 (2009),  30–36  mathnet  zmath; Math. Models Comput. Simul., 2:2 (2010), 180–185  scopus
2008
38. R. I. Parovik, P. P. Firstov, “The Algorithm of Calculation of Density of a Stream of Radon $(^{222}\textrm{Rn})$ from the Surface of the Ground”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, 3(4),  96–101  mathnet
2007
39. R. I. Parovik, I. A. Iljin, P. P. Firstov, “Generalized one-dimensional model for mass transfer of radon $ ^222$Rn in ground and exhalation it in the surface layer of the atmosphere”, Matem. Mod., 19:11 (2007),  43–50  mathnet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020