Born: March 20, 1938, Gorky City (N. Novgorod), Father — Petr Sergeevich Novikov (1901–1975), outstanding mathematician (Descriptive Set Theory, Inverse Problem for the Newtonian Gravity, Mathematical Logic and Combinatorial Group Theory), Mother — Keldysh Lyudmila Vsevolodovna (1904–1976), well-known mathematician, full professor (Set Theory and Geometric Topology).
1955–1960 Study in Moscow State University Department of Mathematics and Mechanics,
1960 Student diploma from the Department of Mathematics and Mechanics of MSU.
Thesis title: "Homotopy properties of Thom complexes", (Prof. M. M. Postnikov — adviser).
1960–1963 Aspirantura, the Steklov Institute of Mathematics (Prof. M. M. Postnikov — adviser).
1964 Candidate of Science (=PhD) in Physics and Mathematics.
Thesis title: "Differentiable sphere bundles".
1965 Doctor of Science in Physics and Mathematics, Thesis title: "Homotopy equivalent smooth manifolds".
1962 Married, 3 children, 1 son and 2 daughters.
Employment:
1963–1975 The staff at the Steklov Institute of Mathematics, junior researcher (senior researcher since 1965)
1967 The staff at the Department of Differential Geometry of Moscow State University, full professor
1971–1993 Head of the Mathematics Group at the L. D. Landau Institute of Theoretical Physics of the Academy of Sciences of the USSR,
after 1993 — Principal Researcher in the same Institute
1983 Head of the Chair in Higher Geometry and Topology of Moscow State University
1984 Head of the Group in Geometry and Topology of the Steklov Mathematical Institute of the Academy of Sciences of the USSR
02/1991–08/1991 Research professor, Laboratory of Theoretical Physics, Ec. Norm. Sup. de Paris, France
1992–1996 University of Maryland at College Park, visiting full professor IPST and Math Department
1996 University of Maryland at College Park, full professor IPST and Math Department (Distinguished University Professor since 1997)
06/2000–06/2001 — November 2002 — Visiting Distinguished Professor of KIAS, Seoul (Korean Institute of Advanced Studies)
Special Service:
1983–1986 Member of Fields Medal Committee of The International Mathematical Union (for the International Mathematical Congress, Berckeley, 1986)
1985–1996 President of the Moscow Mathematical Society
1986–1990 Vice-President of the International Association of Mathematical Physics
1986 Editor-in-Chief of the Journal "Uspekhi Math Nauk" (="Russian Math Surveys")
1984–1991 Head of the Problem Committee of the Geometry and Topology at the Mathematical Division of the Academy of Sciences of USSR
1994–1996 Member of the Program Committee of The European Math Society (for the 2nd European Math Congress, Budapest, July 1996)
1995–1998 Member of the Program Committee of the International Mathematical Union (for the International Mathematical Congress, Berlin, August 1998)
1993–1998 Head of the Expert Committee in Mathematics, Mechanics, Informatics in the Russian Foundation for the Fundamental Research (RFFR).
2000"2002 Member of the Fields Medal Committee of the International Mathematical Union (for the International Mathematical Congress, Beigin, August 2002)
Awards and Honors:
1964 Moscow Math Society Award for young mathematicians
1966–1981 Corresponding member of the Academy of Sciences of the USSR
1967 Lenin Prize
1970 Fields Medal of the International Mathematical Union
1981 Lobachevskii International Prize of the Academy of Sciences of the USSR
1981 Full Member of the Academy of Sciences of the USSR
1987 Honorary Member of the London Math. Society
1988 Honorary Member of the Serbian Academy of Art and Sciences
1988 Doctor Honoris Causa, University of Athens
1991 Foreign Member, "Academia de Lincei", Italy
1993 Academia Europea, member
1994 Foreign associate, National Academy of Sciences, USA
1996 Member, Pontifical Academy of Sciences (Vatican)
1997 Distinguished University Professor, University of Maryland at College Park
1998 Conferences in Honor of 60th birthday: Solitons, Geometry, Topology: On the Crossroads,
a) Steklov Math Institute and Landau Institute for Theor Physics, Moscow, Russia, May 26–31, 1998
b) University of Maryland at College Park, College Park, MD, September 24–26, 1998
1999 Doctor Honoris Causa, University of Tel Aviv
2003 Fellow, European Academy of Sciences, Brussels
S. P. Novikov, “Spinning tops and magnetic orbits”, Russian Math. Surveys, 75:6 (2020), 1133–1141
2019
2.
A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173 (cited: 1) (cited: 2)
3.
S. P. Novikov, R. De Leo, I. A. Dynnikov, A. Ya. Mal'tsev, “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4 (2019), 710–721 (cited: 1) (cited: 1)
2018
4.
A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297 (cited: 4) (cited: 2)
2017
5.
P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107
2016
6.
P. G. Grinevich, S. P. Novikov, “On $\mathbf{s}$-meromorphic ordinary differential operators”, Russian Math. Surveys, 71:6 (2016), 1143–1145 (cited: 1) (cited: 1)
2015
7.
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329 (cited: 1) (cited: 1)
2014
8.
P. G. Grinevich, S. P. Novikov, “Spectrally meromorphic operators and non-linear systems”, Russian Math. Surveys, 69:5 (2014), 924–926 (cited: 3) (cited: 1) (cited: 1) (cited: 3)
2013
9.
P. G. Grinevich, S. P. Novikov, “Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887 (cited: 2)
2011
10.
S. P. Novikov, P. Grinevich and A. Mironov, “On the nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator”, 2011, arXiv: 1101.5678
11.
Proc. Steklov Inst. Math., 273 (2011), 238–251 (cited: 4)
12.
P. G. Grinevich, S. P. Novikov, “Singular solitons and indefinite metrics”, Dokl. Math., 83:1 (2011), 56–58 (cited: 3) (cited: 2) (cited: 2) (cited: 3)
13.
S. P. Novikov, P. Grinevich, and A. Mironov, “2D Pauli operator in the magnetic field. Low temperature physics”, Low Temperature Physics, 37 (2011), 829–833 (cited: 1) (cited: 1) (cited: 1)
2010
14.
P. Grinevich, A. Mironov, S. Novikov, New Reductions and Nonlinear Systems for 2D Schrodinger Operators, 2010 , arXiv: 1001.4300
15.
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data”, Russian Math. Surveys, 65:3 (2010), 580–582 (cited: 9) (cited: 6) (cited: 6) (cited: 6)
16.
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127 (cited: 3) (cited: 1)
2009
17.
P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650 (cited: 6) (cited: 5) (cited: 5) (cited: 6)
18.
S. P. Novikov, Four Lectures: Discretization and Integrability. Discrete Spectral Symmetries, Lecture Notes in Phys., 767, Springer, Berlin, 2009, 119–138 (cited: 2)
2008
19.
S. P. Novikov, “Dynamical systems and differential forms. Low dimensional Hamiltonian systems”, Geometric and probabilistic structures in dynamics, Contemp. Math., 469, Amer. Math. Soc., Providence, RI, 2008, 271–287 (cited: 2)
20.
P. G. Grinevich, S. P. Novikov, “Reality problems in the soliton theory”, Probability, geometry and integrable systems, Math. Sci. Res. Inst. Publ., 55, Cambridge Univ. Press, Cambridge, 2008, 221–239
21.
S. P. Novikov, Lectures on Discrete Systems, University of Montreal, Canada, June 13–20, Proceedings of Workshop on the Discrete Systems and Symmetry, 2008
2006
22.
S. P. Novikov, I. A. Taimanov, Modern geometric structures and fields, Translated from the 2005 Russian original by Dimitry Chibisov, Graduate Studies in Mathematics, 71, American Mathematical Society, Providence, RI, 2006 , xx+633 pp.
23.
A. Ya. Maltsev, S. P. Novikov, “Topology, quasiperiodic functions, and the transport phenomena”, Topology in condensed matter, Springer Ser. Solid-State Sci., 150, Springer, Berlin, 2006, 31–59
2005
24.
S. P. Novikov, “The Schrödinger equation and symplectic geometry”, Surveys in modern mathematics, London Math. Soc. Lecture Note Ser., 321, Cambridge Univ. Press, Cambridge, 2005, 203–210
25.
S. P. Novikov, Topology of Foliations given by the real part of holomorphic $1$-forms, 2005 , arXiv: math/0501338
26.
S. P. Novikov, “Topology of generic Hamiltonian foliations on Riemann surfaces”, Mosc. Math. J., 5:3 (2005), 633–667 (cited: 1) (cited: 1)
27.
I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26 (cited: 8) (cited: 4) (cited: 4) (cited: 7)
28.
S. P. Novikov, “On Metric-Independent Exotic Homology”, Proc. Steklov Inst. Math., 251 (2005), 206–212
2004
29.
B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Topological and algebraic geometry methods in contemporary mathematical physics, Classic Reviews in Mathematics and Mathematical Physics, 2, Cambridge Scientific Publishers, Cambridge, 2004 , iv+139 pp.
30.
A. Ya. Maltsev, S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46 (cited: 18) (cited: 10) (cited: 22)
31.
S. P. Novikov, “The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the West”, Translated from Istor.-Mat. Issled. (2) No. 7(42) (2002), 326–356; MR1960272 by A. Sossinsky, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 1–24
32.
S. P. Novikov, “Topology in the 20th century: a view from the inside”, Russian Math. Surveys, 59:5 (2004), 803–829 (cited: 4) (cited: 4)
33.
S. P. Novikov, “Algebraic topology”, Sovrem. Probl. Mat., 4, Steklov Math. Inst., RAS, Moscow, 2004, 3–45 , 46 pp.
34.
S. P. Novikov, “Discrete Connections and Difference Linear Equations”, Proc. Steklov Inst. Math., 247 (2004), 168–183
2003
35.
P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, Integrability, topological solitons and beyond, J. Math. Phys., 44, no. 8, 2003, 3174–3184 (cited: 1) (cited: 1)
36.
A. Ya. Maltsev, S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Dedicated to the 50th anniversary of IMPA, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 171–210 (cited: 12) (cited: 3) (cited: 11)
37.
P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math., 56:7 (2003), 956–978 (cited: 7) (cited: 7)
38.
I. A. Dynnikov, S. P. Novikov, “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3:2 (2003), 419–438 (cited: 26) (cited: 26) (cited: 17)
39.
I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510 (cited: 19) (cited: 10) (cited: 18)
2002
40.
S. P. Novikov, On the exotic De-Rham cohomology. Perturbation theory as a spectral sequence, 2002 , arXiv: math-ph/0201019
2001
41.
B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 177–332
42.
A. Ya. Maltsev, S. P. Novikov, “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156:1-2 (2001), 53–80 (cited: 54) (cited: 39) (cited: 61)
43.
S. P. Novikov, A Note on the Real Fermionic and Bosonic quadratic forms: Their Diagonalization and Topological Interpreation, 2001 , arXiv: math-ph/0110032
44.
P. G. Grinevich, S. P. Novikov, “Real finite-zone solutions of the sine-Gordon equation: a formula for the topological charge”, Russian Math. Surveys, 56:5 (2001), 980–981 (cited: 6) (cited: 5)
2000
45.
S. P. Novikov, “Classical and modern topology. Topological phenomena in real world physics”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., no. Special Volume, 2000, 406–424 (cited: 2)
46.
S. P. Novikov, “Surgery in the 1960s”, Surveys on surgery theory, v. 1, Ann. of Math. Stud., 145, Princeton Univ. Press, Princeton, NJ, 2000, 31–39
47.
B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 (cited: 5) (cited: 3) (cited: 5)
48.
I. M. Krichever, S. P. Novikov, “Holomorphic bundles and commuting difference operators. Two-point constructions”, Russian Math. Surveys, 55:3 (2000), 586–588 (cited: 8) (cited: 7)
49.
I. M. Krichever, S. P. Novikov, “Holomorphic bundles and scalar difference operators: one-point constructions”, Russian Math. Surveys, 55:1 (2000), 180–181 (cited: 3) (cited: 4)
1999
50.
S. P. Novikov, “Schrodinger operators on graphs and symplectic geometry”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 397–413
51.
I. Krichever, S. P. Novikov, “Periodic and almost-periodic potentials in inverse problems”, Inverse Problems, 15:6 (1999), R117–R144 (cited: 14) (cited: 15)
52.
I. M. Krichever, S. P. Novikov, “Trivalent graphs and solitons”, Russian Math. Surveys, 54:6 (1999), 1248–1249 (cited: 9) (cited: 6)
53.
S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Russian Math. Surveys, 54:5 (1999), 1031–1032 (cited: 7) (cited: 3) (cited: 5)
54.
S. P. Novikov, A. S. Schwarz, “Discrete Lagrangian systems on graphs. Symplectic-topological properties”, Russian Math. Surveys, 54:1 (1999), 258–259 (cited: 7) (cited: 7)
55.
S. P. Novikov, “Difference Schrödinger Operators”, Proc. Steklov Inst. Math., 224 (1999), 250–265
1998
56.
S. Novikov, “Discrete Schrödinger operators and topology”, Mikio Sato: a great Japanese mathematician of the twentieth century, Asian J. Math., 2, no. 4, 1998, 921–933
57.
S. P. Novikov, A. Ya. Maltsev, “Topological phenomena in normal metals”, Phys. Uspekhi, 41:3 (1998), 231–239 (cited: 9) (cited: 25) (cited: 24)
1997
58.
S. Novikov, “Rôle of integrable models in the development of mathematics”, Fields Medallists' lectures, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997, 202–217
59.
S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132
60.
S. P. Novikov, “The Schrödinger operator on graphs and topology”, Russian Math. Surveys, 52:6 (1997), 1320–1321 (cited: 5) (cited: 11)
61.
I. A. Dynnikov, S. P. Novikov, “Laplace transforms and simplicial connections”, Russian Math. Surveys, 52:6 (1997), 1294–1295 (cited: 4) (cited: 5)
62.
S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 (cited: 45) (cited: 44)
63.
S. P. Novikov, “Algebraic properties of two-dimensional difference operators”, Russian Math. Surveys, 52:1 (1997), 226–227 (cited: 9) (cited: 7) (cited: 7)
1996
64.
S. P. Novikov, “A correspondence between $\beta$-pre-Frattini subalgebras and $\beta$-normalizers of multirings”, Vestn. Belorussk. gos. un-ta. Ser. 1. Fiz., matem., inform., 1996, no. 1, 46–48
65.
S. P. Novikov, “Theory of the string equation in the double-scaling limit of 1-matrix models”, Internat. J. Modern Phys. B, 10:18-19 (1996), 2249–2271 (cited: 1)
66.
S. P. Novikov, “Topology”, Topology, I, Encyclopaedia Math. Sci., 12, Springer, Berlin, 1996, 1–319
67.
S. P. Novikov, A. Ya. Maltsev, “Topologicheskie kvantovye kharakteristiki, nablyudaemye pri issledovanii provodimosti v normalnykh metallakh”, Pisma v ZhETF, 63:10 (1996), 809–813
1995
68.
P. G. Grinevich, S. P. Novikov, “Nonselfintersecting magnetic orbits on the plane. Proof of the overthrowing of cycles principle”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 59–82
69.
V. M. Buchstaber, S. P. Novikov, “The S. P. Novikov Seminar”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 1–7
70.
S. P. Novikov, “The semiclassical electron in a magnetic field and lattice. Some problems of low-dimensional “periodic” topology”, Geom. Funct. Anal., 5:2 (1995), 434–444 (cited: 5) (cited: 4)
71.
A. P. Veselov, S. P. Novikov, “Exactly soluble periodic two-dimensional Schrödinger operators”, Russian Math. Surveys, 50:6 (1995), 1316–1317 (cited: 1) (cited: 1)
1994
72.
S. P. Novikov, Solitons and geometry, Lezioni Fermiane. [Fermi Lectures], Published for the Scuola Normale Superiore, Pisa, 1994 , ii+60 pp.
1995
73.
P. G. Grinevich, S. P. Novikov, “String equation. II. Physical solution”, St. Petersburg Math. J., 6:3 (1995), 553–574
1993
74.
S. P. Novikov, “Differential geometry and hydrodynamics of soliton lattices”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 242–256
75.
B. A. Dubrovin, S. P. Novikov, Hydrodynamics of soliton lattices, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Harwood Academic Publishers GmbH, Yverdon, 1993 , ii+136 pp.
76.
S. P. Novikov, “Quasiperiodic structures in topology”, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 223–233
77.
S. P. Novikov, A. Ya. Mal'tsev, “The Liouville form of averaged Poisson brackets”, Russian Math. Surveys, 48:1 (1993), 155–157 (cited: 4) (cited: 6)
1992
78.
S. P. Novikov, “Action-angle variables and algebraic geometry”, La Mécanique analytique de Lagrange et son héritage, II (Turin, 1989), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126, no. suppl. 2, 1992, 139–150
79.
S. Novikov, “Rôle of integrable models in the development of mathematics”, Mathematical research today and tomorrow (Barcelona, 1991), Lecture Notes in Math., 1525, Springer, Berlin, 1992, 13–28
80.
S. P. Novikov, “Integrability in mathematics and theoretical physics: solitons”, Math. Intelligencer, 14:4 (1992), 13–21 (cited: 4) (cited: 1) (cited: 3)
81.
S. P. Novikov, “Hydrodynamics of soliton lattices: differential geometry and Hamiltonian formalism”, Progress in variational methods in Hamiltonian systems and elliptic equations (L'Aquila, 1990), Pitman Res. Notes Math. Ser., 243, Longman Sci. Tech., Harlow, 1992, 144–156
82.
B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 93, Ed. 2, Springer-Verlag, New York, 1992 , xvi+468 pp.
83.
S. P. Novikov, “Various doublings of Hopf algebras. Operator algebras on quantum groups, complex cobordisms”, Russian Math. Surveys, 47:5 (1992), 198–199 (cited: 6) (cited: 7)
1990
84.
S. P. Novikov, “Riemann surfaces, operator fields, strings – analogues of the Fourier-Laurent bases”, Common trends in mathematics and quantum field theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., no. 102, 1990, 293–300 (cited: 1)
85.
S. P. Novikov, “On the equation $[L,A]=\epsilon\cdot 1$”, With an appendix by the author and B. A. Dubrovin, Common trends in mathematics and quantum field theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., no. 102, 1990, 287–292 (cited: 1)
86.
S. P. Novikov, A. T. Fomenko, Basic elements of differential geometry and topology, Translated from the Russian by M. V. Tsaplina, Mathematics and its Applications (Soviet Series), 60, Kluwer Academic Publishers Group, Dordrecht, 1990 , x+490 pp.
87.
K. I. Moiseevich, S. P. Novikov, “Riemann surfaces, operator fields, strings. Analogues of the Fourier–Laurent bases”, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, 356–388
88.
B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part III. Introduction to homology theory, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 124, Springer-Verlag, New York, 1990 , x+416 pp.
89.
S. P. Novikov, “Complex analysis on Riemann surfaces motivated by the operatorial string theory”, Analysis, et cetera, Academic Press, Boston, MA, 1990, 501–519
90.
S. P. Novikov, “Quantization of finite-gap potentials and nonlinear quasiclassical approximation in nonperturbative string theory”, Funct. Anal. Appl., 24:4 (1990), 296–306 (cited: 13) (cited: 18)
1989
91.
I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 (cited: 42) (cited: 40)
92.
B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 (cited: 262)
1988
93.
I. M. Krichever, S. P. Novikov, “Virasoro–Gel'fand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. Phys., 5:4 (1988), 631–661 (cited: 9)
94.
B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Geometria contemporanea. Metodi e applicazioni, Translated from the second Russian edition by Vitalij Panasenko, v. II, Nuova Biblioteca di Cultura. [New Library of Culture], Geometria e topologia delle varietà. [Geometry and topology of manifolds], Editori Riuniti, Rome, 1988 , 367 pp.
95.
S. P. Novikov, “Analytical theory of homotopy groups”, Topology and geometry – Rohlin Seminar, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 99–112
96.
P. G. Grinevich, S. P. Novikov, “Inverse scattering problem for the two-dimensional Schrödinger operator at a fixed negative energy and generalized analytic functions”, Plasma theory and nonlinear and turbulent processes in physics (Kiev, 1987), v. 1, 2, World Sci. Publishing, Singapore, 1988, 58–85
97.
P. G. Grinevich, S. P. Novikov, “Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27 (cited: 48) (cited: 47)
1987
98.
B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Geometria contemporanea. Metodi e applicazioni, Translated from the second Russian edition by Vitalij Panasenko, v. I, Nuova Biblioteca di Cultura. [New Library of Culture], Geometria delle superfici, dei gruppi di trasformazioni e dei campi. [The geometry of surfaces, transformation groups and fields], Editori Riuniti, Rome, 1987 , 416 pp.
99.
S. P. Novikov, A. T. Fomenko, Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 , 432 pp.
100.
S. P. Novikov, “Two-dimensional Schrödinger operator and solitons. 3-dimensional integrable systems”, VIIIth international congress on mathematical physics (Marseille, 1986), World Sci. Publishing, Singapore, 1987, 226–241
101.
V. V. Avilov, I. M. Krichever, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii Kortevega–de Friza”, DAN SSSR, 295:2 (1987), 345–349 (cited: 8) (cited: 6)
102.
V. V. Avilov, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii KdF”, DAN SSSR, 294:2 (1987), 325–329 (cited: 6) (cited: 10)
103.
I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 (cited: 39) (cited: 58)
104.
I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 (cited: 65) (cited: 107)
1986
105.
B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986 , 760 pp.
106.
S. P. Novikov, M. A. Shubin, “Neravenstvo Morsa i neimanovskie II$_1$-faktory”, DAN SSSR, 289:2 (1986), 289–292 (cited: 6) (cited: 27)
107.
S. P. Novikov, “Bloch homology. Critical points of functions and closed 1-forms”, Dokl. Math., 33 (1986), 551–555
108.
S. P. Novikov, A. P. Veselov, “Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations”, Solitons and coherent structures (Santa Barbara, Calif., 1985), Phys. D, 18, no. 1-3, 1986, 267–273 (cited: 136) (cited: 135)
109.
S. P. Novikov, “Topology”, Topology – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 12, VINITI, Moscow, 1986, 5–252
110.
S. P. Novikov and M. A. Shubin, “Morse Theory and von Neumann invariants of non-simply-connected manifolds”, Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics, Uspekhi Mat. Nauk, 41:5(251) (1986), 222–223
1985
111.
A. P. Veselov, I. M. Krichever, S. P. Novikov, “Two-dimensional periodic Schrödinger operators and Prym's $\theta$-functions”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985, 283–301
112.
S. P. Novikov, “Differential geometry and the averaging method for field-theoretic systems”, III International Symposium on Selected Topics in Statistical Mechanics (Dubna, 1984), v. II, Ob'ed. Inst. Yadernykh Issled., Dubna, 1985, 106–118
113.
B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. 2$^e$ partie. Géométrie et topologie des variétés. [Geometry and topology of manifolds], Translated from the Russian by Vladimir Kotliar; Reprint of the 1982 translation, Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics], “Mir”, Moscow, 1985 , 371 pp.
114.
B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. 1$^{re$ partie.} Géométrie des surfaces, des groupes de transformations et des champs. [Geometry of surfaces, transformation groups and fields], Translated from the Russian by Vladimir Kotliar; Reprint of the 1982 translation, Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics], “Mir”, Moscow, 1985 , 438 pp.
115.
B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part II. The geometry and topology of manifolds, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 104, Springer-Verlag, New York, 1985 , xv+430 pp.
116.
S. P. Novikov, “Analiticheskaya teoriya gomotopii. Zhestkost gomotopicheskikh integralov”, DAN SSSR, 283:5 (1985), 1088–1091 (cited: 7)
117.
A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, DAN SSSR, 283:5 (1985), 1036–1039 (cited: 13) (cited: 43)
118.
S. P. Novikov, “The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems”, Russian Math. Surveys, 40:4 (1985), 85–98 (cited: 29) (cited: 23)
1986
119.
S. P. Novikov, “Algebraic topology at the Steklov Mathematical Institute of the Academy of Sciences of the USSR”, Proc. Steklov Inst. Math., 169 (1986), 27–50
1985
120.
B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems – 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 4, VINITI, Moscow, 1985, 179–277
121.
A. A. Balinskii, S. P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Dokl. Akad. Nauk SSSR, 283:5 (1985), 1036–1039
1984
122.
S. P. Novikov, “An averaging method for one-dimensional systems”, Nonlinear and turbulent processes in physics (Kiev, 1983), v. 3, Harwood Academic Publ., Chur, 1984, 1529–1540
123.
S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons. The inverse scattering method, Translated from the Russian, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984 , xi+276 pp.
124.
A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788 (cited: 47) (cited: 36)
125.
B. A. Dubrovin, S. P. Novikov, “O skobkakh Puassona gidrodinamicheskogo tipa”, DAN SSSR, 279:2 (1984), 294–297 (cited: 28) (cited: 58)
126.
A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24 (cited: 57) (cited: 78)
127.
B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 , 344 pp.
128.
S. P. Novikov, “Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations”, Differential geometry, Lie groups and mechanics. Part VI, Zap. Nauchn. Sem. LOMI, 133, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 177–196
129.
B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 93, Springer-Verlag, New York, 1984 , xv+464 pp.
130.
S. P. Novikov, I. A. Taimanov, “Periodicheskie ekstremali mnogoznachnykh ili ne vsyudu polozhitelnykh funktsionalov”, DAN SSSR, 274:1 (1984), 26–28 (cited: 10) (cited: 17)
131.
S. P. Novikov, “The analytic generalized Hopf invariant. Many-valued functionals”, Russian Math. Surveys, 39:5 (1984), 113–124 (cited: 14) (cited: 13)
1986
132.
S. P. Novikov, “Critical points and level surfaces of multivalued functions”, Proc. Steklov Inst. Math., 166 (1986), 223–232
1985
133.
A. P. Veselov, S. P. Novikov, “Poisson brackets and complex tori”, Proc. Steklov Inst. Math., 165 (1985), 53–65
1984
134.
S. P. Novikov, I. A. Taimanov, “Periodic extremals of multivalued or not everywhere positive functionals”, Dokl. Akad. Nauk SSSR, 274:1 (1984), 26–28
1983
135.
S. P. Novikov, “Multivalued functionals in modern mathematical physics”, Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117, suppl. 2, 1983, 635–644
136.
B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 (cited: 81) (cited: 95)
1985
137.
S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20 (cited: 17)
1982
138.
B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. II. Géométrie et topologie des variétés, Translated from the Russian by Vladimir Kotliar, “Mir”, Moscow, 1982 , 371 pp.
139.
B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. I. Géométrie des surfaces, des groupes de transformations et des champs, Translated from the Russian by Vladimir Kotliar, “Mir”, Moscow, 1982 , 438 pp.
140.
B. A. Dubrovin, S. P. Novikov, “Algebrogeometricheskie skobki Puassona dlya veschestvennykh konechnozonnykh reshenii uravneniya sine-Gordon i nelineinogo uravneniya Shrëdingera”, DAN SSSR, 267:6 (1982), 1295–1300 (cited: 5) (cited: 8)
141.
A. P. Veselov, S. P. Novikov, “O skobkakh Puassona, sovmestimykh s algebraicheskoi geometriei i dinamikoi KdF na mnozhestve konechnozonnykh potentsialov”, DAN SSSR, 266:3 (1982), 533–537 (cited: 4) (cited: 8)
142.
S. P. Novikov, “Hamiltonian formalism and variational-topological methods for finding periodic trajectories of conservative dynamical systems”, Mathematical physics reviews, v. 3, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 3, Harwood Academic Publ., Chur, 1982, 3–51
143.
S. P. Novikov, “Kommutiruyuschie operatory ranga $l>1$ s periodicheskimi koeffitsientami”, DAN SSSR, 263:6 (1982), 1311–1314 (cited: 4) (cited: 2)
144.
S. P. Novikov, P. G. Grinevich, “Spectral theory of commuting operators of rank two with periodic coefficients”, Funct. Anal. Appl., 16:1 (1982), 19–20 (cited: 11) (cited: 14)
145.
S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 (cited: 259) (cited: 193)
146.
S. P. Novikov, B. A. Dubrovin and I. M. Krichever, “Topological and algebraic-geometrical methods in contemporary mathematical physics”, Soviet Scientific Reviews, 3 (1982), 1–156
1981
147.
S. P. Novikov, “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, DAN SSSR, 260:1 (1981), 31–35 (cited: 29) (cited: 60)
148.
S. P. Novikov, “Magnito-blokhovskie funktsii i vektornye rassloeniya. Tipichnye zakony dispersii i ikh kvantovye chisla”, DAN SSSR, 257:3 (1981), 538–543 (cited: 11) (cited: 28)
149.
I. M. Krichever, S. P. Novikov, “Algebraic geometry and mathematical physics”, Proc. USA-USSR Conf., eds. V. E. Zakharov, S. V. Manakov, North-Holland, Amsterdam, 1981
150.
S. P. Novikov, “Variational methods and periodic solutions of Kirchhoff-type equations. II”, Funct. Anal. Appl., 15:4 (1981), 263–274 (cited: 18) (cited: 24)
151.
S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 (cited: 21) (cited: 42)
152.
S. P. Novikov, “Kirchhoff type equations and many-valued functions and functionals. Analogue of the Morse-Lyusternik-Shnirel'man theory and periodic orbits in a magnetic field”, Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics, Uspekhi Mat. Nauk, 36:5(221) (1981), 215–224
1980
153.
V. G. Drinfel'd, I. M. Krichever, Yu. I. Manin, S. P. Novikov, “Methods of algebraic geometry in contemporary mathematical physics”, Mathematical physics reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 1–54
154.
B. A. Dubrovin, S. P. Novikov, “Ground states of a two-dimensional electron in a periodic magnetic field”, J. Experiment. Teoret. Phys., 52:3 (1980), 511–516
155.
B. A. Dubrovin, S. P. Novikov, “Osnovnye sostoyaniya v periodicheskom pole. Magnito-blokhovskie funktsii i vektornye rassloeniya”, DAN SSSR, 253:6 (1980), 1293–1297 (cited: 10) (cited: 15)
156.
V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, eds. S. P. Novikov, Nauka, M., 1980 , 320 pp.
157.
S. P. Novikov, “A method of solving the periodic problem for the KdV equations and its generalization”, Solitons, Topics in Current Physics, 17, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980, 325–338
158.
S. P. Novikov, “Linear operators and integrable Hamiltonian systems”, Proc. Intern. Congr. Math. (Helsinki, 1978), Helsinki, 1980
159.
I. M. Krichever, S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Russian Math. Surveys, 35:6 (1980), 53–79 (cited: 134) (cited: 120)
1979
160.
S. P. Novikov, “Algebraicheskaya geometriya i matematicheskaya fizika”, Tr. konferentsii po fundamentalnym problemam matematiki i teoreticheskoi fiziki, posvyaschennoi 70-letiyu so dnya rozhdeniya akademika N. N. Bogolyubova, Ob'edinennyi Institut Yadernykh issledovanii, Dubna, 1979, 459–473
161.
I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i nelineinye uravneniya. Konechnozonnye resheniya ranga 2”, DAN SSSR, 247:1 (1979), 33–37 (cited: 11) (cited: 13)
162.
B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 , 760 pp.
163.
V. L. Golo, M. I. Monastyrsky, S. P. Novikov, “Solutions to the Ginzburg-Landau equations for planar textures in superfluid $^{3}$He”, Comm. Math. Phys., 69:3 (1979), 237–246 (cited: 4) (cited: 4)
164.
O. I. Bogoyavlenskii, S. P. Novikov, “Metody kachestvennoi teorii dinamicheskikh sistem v obschei teorii otnositelnosti”, Nelineinye volny, Nauka, M., 1979, 164–176
1983
165.
O. I. Bogoyavlenskii, S. P. Novikov, “Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics”, J. Soviet Math., 21:3 (1983), 254–260
1978
166.
S. P. Novikov, “New applications of algebraic geometry to nonlinear equations and inverse problems”, Nonlinear evolution equations solvable by the spectral transform, Internat. Sympos. (Accad. Lincei, Rome, 1977), Res. Notes in Math., 26, Pitman, Boston, Mass., 1978, 84–96
167.
S. P. Novikov, “Periodic solitons and algebraic geometry”, Mathematical problems in theoretical physics, Proc. Internat. Conf. (Univ. Rome, Rome, 1977), Lecture Notes in Phys., 80, Springer, Berlin, 1978, 222–228
168.
S. P. Novikov, “Metod resheniya periodicheskoi zadachi dlya uravnenii Kortevega–de Friza i ego obobschenii”, Tr. Vses. konf. po uravneniyam s chastnymi proizvodnymi, posvyasch. 75-letiyu so dnya rozhd. akad. I. G. Petrovskogo, Izd-vo MGU, M., 1978, 184–185
169.
S. P. Novikov, “A method for solving the periodic problem for the KdV equation and its generalizations”, Conference on the Theory and Applications of Solitons (Tucson, Ariz., 1976), Rocky Mountain J. Math., 8, no. 1-2, 1978, 83–93 (cited: 3)
170.
I. M. Krichever, S. P. Novikov, “Holomorphic bundles over Riemann surfaces and the Kadomtsev–Petviashvili equation. I”, Funct. Anal. Appl., 12:4 (1978), 276–286 (cited: 28)
1976
171.
B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, DAN SSSR, 229:1 (1976), 15–18 (cited: 63)
172.
O. I. Bogoyavlenskii, S. P. Novikov, “The relationship between Hamiltonian formalisms of stationary and nonstationary problems”, Funct. Anal. Appl., 10:1 (1976), 8–11 (cited: 44)
173.
O. I. Bogoyavlenskii, S. P. Novikov, “Homogeneous models in general relativity and gas dynamics”, Russian Math. Surveys, 31:5 (1976), 31–48 (cited: 9)
174.
B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 (cited: 334)
1975
175.
O. I. Bogoyavlenskii, S. P. Novikov, “Kachestvennaya teoriya odnorodnykh kosmologicheskikh modelei”, Tr. seminara im. I. G. Petrovskogo, 1, Izd-vo MGU, M., 1975, 7–43
1974
176.
B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAN SSSR, 219:3 (1974), 531–534 (cited: 16)
177.
B. A. Dubrovin, S. P. Novikov, “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Physics JETP, 40:6 (1974), 1058–1063
178.
S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 (cited: 249)
1973
179.
O. I. Bogoyavlenskiĭ, S. P. Novikov, “Singularities of the cosmological model of the Bianchi IX type according to the qualitative theory of differential equations”, Soviet Physics JETP, 37 (1973), 747–755
1972
180.
S. P. Novikov, “O nekotorykh svoistvakh kosmologicheskikh modelei”, ZhETF, 62:6 (1972), 1977–1990
1971
181.
Novikov S. P., “Analogues hermitiens de la $K$-théorie”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 39–45
182.
V. M. Buchstaber, A. S. Mishchenko, S. P. Novikov, “Formal groups and their role in the apparatus of algebraic topology”, Russian Math. Surveys, 26:2 (1971), 63–90 (cited: 11)
183.
V. M. Buchstaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116 (cited: 13)
1970
184.
S. P. Novikov, “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Essays on Topology and Related Topics, Mémoires dédiés à Georges de Rham, Springer, New York, 1970, 147–155
185.
S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292 (cited: 14)
186.
S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. II”, Math. USSR-Izv., 4:3 (1970), 479–505 (cited: 6)
1968
187.
S. P. Novikov, “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Proc. Internat. Congr. Math. (Moscow, 1966), Amer. Math. Soc., Providence, RI, 1968, 172–179
188.
S. P. Novikov, “Adams operators and fixed points”, Math. USSR-Izv., 2:6 (1968), 1193–1211
1967
189.
S. P. Novikov, “Koltsa operatsii i spektralnye posledovatelnosti tipa Adamsa v ekstraordinarnykh teoriyakh kogomologii, $U$-kobordizmy i $K$-teoriya”, DAN SSSR, 172 (1967), 33–36 (cited: 2)
190.
S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913
1966
191.
S. P. Novikov, Soviet Math. Dokl., 7 (1966), 1508–1512
192.
S. P. Novikov, B. Yu. Sternin, “Traces of elliptic operators on submanifolds and $K$K-theory”, Soviet Math. Dokl., 7 (1966), 1373–1376
193.
S. P. Novikov, “Kharakteristicheskie klassy Pontryagina”, Mezhd. kongr. mat., Tezisy dokladov, M., 1966, 158–159
194.
S. P. Novikov, “The Cartan–Serre theorem and intrinsic homology”, Russian Math. Surveys, 21:5 (1966), 209–224
195.
S. P. Novikov, “On manifolds with free abelian fundamental group and their application”, Izv. Akad. Nauk SSSR Ser. Mat., 30:1 (1966), 207–246
1965
196.
S. P. Novikov, “Topologicheskaya invariantnost ratsionalnykh klassov Pontryagina”, DAN SSSR, 163:3 (1965), 298–300 (cited: 4)
197.
S. P. Novikov, “Gomotopicheskaya i topologicheskaya invariantnost nekotorykh ratsionalnykh klassov Pontryagina”, DAN SSSR, 162:6 (1965), 1248–1251 (cited: 2)
198.
S. P. Novikov, “Struktury na mnogoobraziyakh”, Trudy 4-i Vses. Topol. Konf. (Tashkent, 1963), 1965, 98–120
199.
S. P. Novikov, “New ideas in algebraic topology ($K$-theory and its applications)”, Russian Math. Surveys, 20:3 (1965), 37–62
200.
S. P. Novikov, “Rational Pontrjagin classes. Homeomorphism and homotopy type of closed manifolds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 29:6 (1965), 1373–1388
201.
S. P. Novikov, “Differentiable sphere bundles”, Izv. Akad. Nauk SSSR Ser. Mat., 29:1 (1965), 71–96
202.
S. P. Novikov, “Topology of foliations”, Trans. Mosc. Math. Soc., 14 (1965), 268–304
1964
203.
S. P. Novikov, “Smooth foliations on three-dimensional manifolds”, Russian Math. Surveys, 19:6 (1964), 79–81
204.
S. P. Novikov, I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “The main trends of algebraic topology and algebraic geometry”, Russian Math. Surveys, 19:6 (1964), 67–73
205.
S. P. Novikov, “Homotopically equivalent smooth manifolds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 28:2 (1964), 365–474
206.
M. I. Vishik, S. P. Novikov, M. M. Postnikov, “The Gor'kii Mathematical Seminar on Homotopic Topology”, Uspekhi Mat. Nauk, 19:6(120) (1964), 237–238
207.
S. P. Novikov, “Foliations of codimension 1”, Sov. Math. Dokl., 1964, no. 5, 1023–1025
208.
S. P. Novikov, “Foliations of codimension 1 on manifolds”, Sov. Math. Dokl., 5 (1964), 540–544
1963
209.
S. P. Novikov, “Nekotorye svoistva mnogoobrazii razmernosti $4k+2$”, DAN SSSR, 153:5 (1963), 1005–1008 (cited: 1)
210.
S. P. Novikov, “Gomotopicheskie svoistva gruppy diffeomorfizmov sfery”, DAN SSSR, 148:1 (1963), 32–35
211.
S. P. Novikov, “Differential topology”, Itogi Nauki. Algebra. Topol. 1962, VINITI, Moscow, 1963, 134–160
1962
212.
S. P. Novikov, “O diffeomorfizme odnosvyaznykh mnogoobrazii”, DAN SSSR, 143:5 (1962), 1046–1049
213.
S. P. Novikov, “Smooth manifolds of a general homotopy type”, Intern. Cong. Math., section 4, Stockholm, 1962, 139
214.
S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb. (N.S.), 57(99):4 (1962), 407–442
1961
215.
S. P. Novikov, “O vlozhenii odnosvyaznykh mnogoobrazii v evklidovo prostranstvo”, DAN SSSR, 138:4 (1961), 775–778 (cited: 1)
1960
216.
S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720
1959
217.
S. P. Novikov, “O kogomologiyakh algebry Stinroda”, DAN SSSR, 128:5 (1959), 893–895
Presentations in Math-Net.Ru
1.
Multivalued functions and functionals S. P. Novikov International Conference "Classical Mechanics, Dynamical Systems and Mathematical Physics" on the occasion of V. V. Kozlov 70th birthday January 22, 2020 15:00
Открытие V. M. Buchstaber, D. V. Treschev, S. P. Novikov International conference "Discrete Mathematics and Mathematical Crystallography" dedicated to the 80th anniversary of Mikhail Ivanovich Stogrin September 26, 2018 14:00
Сингулярные солитоны S. P. Novikov Conference "Moscow Mathematical Society and Lomonosov Moscow State University" dedicated to the 150th anniversary of Moscow Mathematical Society December 23, 2014 18:35
11.
Singular solutions and spectral theory S. P. Novikov The Seventh International Conference on Differential and Functional Differential Equations August 23, 2014 11:45
Discrete triangular systems S. P. Novikov 3-rd Summer School on Geometric Methods in Mathematical Physics June 26, 2013 14:10
14.
Вступительное слово S. P. Novikov International conference "Algebraic Topology and Abelian Functions" in honour of Victor Buchstaber on occasion of his 70th birthday June 18, 2013 10:05
To the memory of Vladimir (Dima) Arnold S. P. Novikov International conference "Analysis and Singularities" dedicated to the 75th anniversary of Vladimir Igorevich Arnold December 19, 2012 11:35
Дискретные $SL_2$ связности и операторы S. P. Novikov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS July 18, 2012 14:00
20.
New discretization of complex analysis Sergey Novikov International conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone (1890–1980) August 17, 2010 11:30
21.
Теория рассеяния на графах S. P. Novikov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS October 7, 2009 18:30
Дискретный комплексный анализ и плоскость Лобачевского S. P. Novikov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS January 14, 2009 12:30
Discretization of complex analysis S. P. Novikov, I. A. Dynnikov International Conference "Differential Equations and Topology" dedicated to the Centennial Anniversary of L. S. Pontryagin June 22, 2008 12:20
Discrete systems and complex analysis S. P. Novikov International conference "Analysis and Singularities" dedicated to 70th anniversary of Vladimir Igorevich Arnold August 20, 2007 12:10
Discrete connections on simplicial manifolds S. P. Novikov International conference "Geometric Topology, Discrete Geometry and Set Theory" dedicated to the centennial of Ljudmila Vsevolodovna Keldysh August 24, 2004 09:00
Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Tr. Mat. Inst. Steklova, 305, ed. S. P. Novikov, A. A. Gaifullin, T. E. Panov, A. A. Ayzenberg, 2019, 374 с. http://mi.mathnet.ru/book1762
Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Tr. Mat. Inst. Steklova, 286, ed. S. P. Novikov, A. G. Sergeev, 2014, 367 с. http://mi.mathnet.ru/book1528
Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Tr. Mat. Inst. Steklova, 275, ed. S. P. Novikov, E. F. Mishchenko, 2011, 304 с. http://mi.mathnet.ru/book1360
Topology and its applications, Proceedings of the International topology conference (Baku, October 3–8, 1987), Trudy Mat. Inst. Steklov., 193, ed. E. F. Mishchenko, S. P. Novikov, 1992, 232 с. http://mi.mathnet.ru/book1114
Discrete geometry and topology, Dedicated to the 100th anniversary of the birth of Boris Nikolaevich Delone, Trudy Mat. Inst. Steklov., 196, ed. E. F. Mishchenko, S. P. Novikov, 1991, 176 с. http://mi.mathnet.ru/book1110