RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Staroletov, Alexey Mikhailovich

Total publications: 14 (14)
in MathSciNet: 13 (13)
in zbMATH: 5 (5)
in Web of Science: 11 (11)
in Scopus: 9 (9)
Cited articles: 12
Citations in Math-Net.Ru: 52
Citations in Web of Science: 44
Citations in Scopus: 29

Number of views:
This page:1254
Abstract pages:3062
Full texts:818
References:367
Staroletov, Alexey Mikhailovich
Candidate of physico-mathematical sciences
E-mail:
Keywords: finite simple groups, permutation groups, axial algebras, representation theory of finite groups

http://www.mathnet.ru/eng/person48688
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/888105
http://orcid.org/0000-0002-3914-6758
http://www.researcherid.com/rid/B-9871-2017
http://www.scopus.com/authid/detail.url?authorId=35386851200
https://www.researchgate.net/profile/Alexey_Staroletov

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2019
1. A. Mamontov, A. Staroletov, M. Whybrow, “Minimal 3-generated Majorana algebras”, Journal of Algebra, 524 (2019), 367–394 , arXiv: 1809.03184  crossref  mathscinet  zmath  isi  scopus
2. A. Galt, A. Staroletov, “On splitting of the normalizer of a maximal torus in $E_6(q)$”, Algebra Colloquium, 26:2 (2019), 329–350 , arXiv: 1806.02619  crossref  mathscinet  zmath  isi  scopus
3. I. Gorshkov, A. Staroletov, “On groups having the prime graph as alternating and symmetric groups”, Communications in Algebra, 47:9 (2019), 3905–3914 , arXiv: 1804.00922  crossref  mathscinet  zmath  isi  scopus (cited: 1)

   2017
4. A. M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. elektron. matem. izv., 14 (2017), 994–1010  mathnet  crossref  isi (cited: 1)
5. A. M. Staroletov, “On almost recognizability by spectrum of simple classical groups”, International Journal of Group Theory, 6:4 (2017), 7–33  crossref  mathscinet  isi (cited: 3)  scopus (cited: 3)

   2014
6. M. A. Grechkoseeva, A. M. Staroletov, “Unrecognizability by spectrum of finite simple orthogonal groups of dimension nine”, Sib. elektron. matem. izv., 11 (2014), 921–928  mathnet (cited: 4)  elib (cited: 2)

   2015
7. A. V. Vasil'ev, A. M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra and Logic, 53:6 (2015), 433–449  mathnet  crossref  mathscinet  isi (cited: 8)  elib  scopus

   2013
8. A. V. Vasil'ev, A. M. Staroletov, “Recognizability of groups $G_2(q)$ by spectrum”, Algebra and Logic, 52:1 (2013), 1–14  mathnet  crossref  mathscinet  zmath  isi (cited: 12)  elib  scopus (cited: 11)

   2012
9. A. M. Staroletov, “On recognition by spectrum of the simple groups $B_3(q)$, $C_3(q)$, and $D_4(q)$”, Siberian Math. J., 53:3 (2012), 532–538  mathnet  crossref  mathscinet  isi (cited: 7)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 8)

   2011
10. A. M. Staroletov, “Sporadic composition factors of finite groups isospectral to simple groups”, Sib. elektron. matem. izv., 8 (2011), 268–272  mathnet (cited: 2)  mathscinet  elib (cited: 1)
11. A. V. Vasil'ev, M. A. Grechkoseeva, A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J., 52:1 (2011), 30–40  mathnet  crossref  mathscinet  isi (cited: 8)  elib  scopus

   2010
12. A. M. Staroletov, “Groups isospectral to the degree 10 alternating group”, Siberian Math. J., 51:3 (2010), 507–514  mathnet  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 6)

   2009
13. A. V. Vasil'ev, I. B. Gorshkov, M. A. Grechkoseeva, A. S. Kondrat'ev, A. M. Staroletov, “On recognizability by spectrum of finite simple groups of types $B_n$, $C_n$, and $ ^2D_n$ for$n=2^k$”, Proc. Inst. Math. Mech., 267, suppl. 1 (2009), S218–S233  mathnet  crossref  mathscinet  mathscinet  isi  elib

   2008
14. A. M. Staroletov, “Insolubility of finite groups which are isospectral to the alternating group of degree $10$”, Sib. Èlektron. Mat. Izv., 5 (2008), 20–24  mathnet  mathscinet  elib

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020