RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Bykov, Dmitrii Aleksandrovich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17

Number of views:
This page:222
Abstract pages:2658
Full texts:732
References:356

http://www.mathnet.ru/eng/person50250
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2019
1. A. A. Mingazov, L. L. Doskolovich, D. A. Bykov, N. L. Kazanskiy, “The two reflector design problem for forming a flat wavefront from a point source as an optimal mass transfer problem”, Computer Optics, 43:6 (2019),  968–975  mathnet
2. L. L. Doskolovich, E. A. Bezus, D. A. Bykov, R. V. Skidanov, N. L. Kazanskiy, “Calculation of a diffractive lens having a fixed focal position at several prescribed wavelengths”, Computer Optics, 43:6 (2019),  946–955  mathnet
3. L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. A. Bezus, “Formulation of the inverse problem of calculating the optical surface for an illuminating beam with a plane wavefront as the MongeľKantorovich problem”, Computer Optics, 43:5 (2019),  705–713  mathnet
2018
4. L. L. Doskolovich, K. V. Andreeva, D. A. Bykov, “Design of an axisymmetric optical element generating a prescribed illuminance distribution and wavefront”, Computer Optics, 42:5 (2018),  772–778  mathnet
5. A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, N. L. Kazanskii, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution”, Computer Optics, 42:4 (2018),  568–573  mathnet
6. L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, “Variational approach to eikonal function computation”, Computer Optics, 42:4 (2018),  557–567  mathnet
7. E. A. Bezus, D. A. Bykov, L. L. Doskolovich, “On the relation between the propagation constant of Bloch surface waves and the thickness of the upper layer of a photonic crystal”, Computer Optics, 42:1 (2018),  22–27  mathnet
2017
8. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings”, Computer Optics, 41:1 (2017),  13–21  mathnet
2015
9. D. A. Bykov, L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators”, Computer Optics, 39:5 (2015),  663–673  mathnet
10. L. L. Doskolovich, N. V. Golovastikov, D. A. Bykov, S. I. Kharitonov, “Resonant approximation of phase-shifted Bragg grating (PSBG) spectra”, Computer Optics, 39:3 (2015),  311–318  mathnet
2014
11. L. L. Doskolovich, E. A. Bezus, D. A. Bykov, “On the compensation of the diffraction orders overlap effect in the Offner spectrometer”, Computer Optics, 38:4 (2014),  777–781  mathnet
12. D. A. Bykov, L. L. Doskolovich, “On the diffraction of an optical beam by a phase shifted Bragg grating”, Computer Optics, 38:4 (2014),  590–597  mathnet
13. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, “Spatial integration of optical beams using phase-shifted Bragg grating”, Computer Optics, 38:3 (2014),  372–376  mathnet
14. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal”, Pis'ma v Zh. Èksper. Teoret. Fiz., 99:2 (2014),  67–71  mathnet  elib; JETP Letters, 99:2 (2014), 63–66  isi  elib  scopus
15. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams”, Kvantovaya Elektronika, 44:10 (2014),  984–988  mathnet  elib [Quantum Electron., 44:10 (2014), 984–988  isi  scopus]
2012
16. D. A. Bykov, L. L. Doskolovich, V. A. Soifer, “Integration of optical pulses by resonant diffraction gratings”, Pis'ma v Zh. Èksper. Teoret. Fiz., 95:1 (2012),  8–12  mathnet  elib; JETP Letters, 95:1 (2012), 6–9  elib  scopus
2009
17. A. N. Kalish, V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. K. Zvezdin, “Magnetooptical Effects in Plasmonic Bilayered Heterostructures”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:1 (2009),  95–102  mathnet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020