RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Shestakov Oleg Vladimirovich

Statistics Math-Net.Ru
Total publications: 30
Scientific articles: 30
Presentations: 1

Number of views:
This page:696
Abstract pages:2711
Full texts:994
References:418
Associate professor
Doctor of physico-mathematical sciences
Birth date: 4.12.1976
E-mail:

http://www.mathnet.ru/eng/person64354
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. Mean-square thresholding risk with a random sample size
O. V. Shestakov
Inform. Primen., 12:3 (2018),  14–17
2. Minimization of errors of calculating wavelet coefficients while solving inverse problems
A. A. Kudryavtsev, O. V. Shestakov
Inform. Primen., 12:2 (2018),  17–23
3. Unbiased risk estimate of stabilized hard thresholding in the model with a long-range dependence
O. V. Shestakov
Inform. Primen., 12:2 (2018),  11–16
4. Bayesian models for testing large groups of service device
A. A. Kudryavtsev, O. V. Shestakov
Inform. Primen., 12:1 (2018),  105–108
5. Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections
A. I. Borisov, O. V. Shestakov
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 1,  21–30
6. Universal thresholding in the models with non-Gaussian noise
O. V. Shestakov
Inform. Primen., 11:2 (2017),  122–125
7. Strong consistency of the mean square risk estimate in the inverse statistical problems
O. V. Shestakov
Inform. Primen., 11:2 (2017),  117–121
8. Local reconstruction of tomographic images in parallel and fan-beam scanning schemes
A. A. Kudryavtsev, O. V. Shestakov, I. A. Fedushin
Sistemy i Sredstva Inform., 27:3 (2017),  52–62
9. Consistency of the risk estimate of the multiple hypothesis testing with the FDR threshold
A. Yu. Zaspa, O. V. Shestakov
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 1,  5–16
10. Precision analysis of wavelet processing of aerodynamic flow patterns
T. V. Zakharova, O. V. Shestakov
Inform. Primen., 10:3 (2016),  46–54
11. The strong law of large numbers for the risk estimate in the problem of tomographic image reconstruction from projections with a correlated noise
O. V. Shestakov
Inform. Primen., 10:3 (2016),  41–45
12. Statistical properties of the denoising method based on the stabilized hard thresholding
O. V. Shestakov
Inform. Primen., 10:2 (2016),  65–69
13. Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities
A. A. Kudriavtsev, O. V. Shestakov
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2016, no. 1,  5–12
14. Nonparametric estimation of multidimensional density with the use of wavelet estimates of univariate projections
O. V. Shestakov
Inform. Primen., 9:2 (2015),  88–92
15. Asymptotic properties of risk estimate in the problem of reconstructing images with correlated noise by inverting the Radon transform
A. A. Eroshenko, O. V. Shestakov
Inform. Primen., 8:4 (2014),  32–40
16. Asymptotic properties of wavelet thresholding risk estimate in the model of data with correlated noise
A. A. Eroshenko, O. V. Shestakov
Inform. Primen., 8:1 (2014),  36–44
17. Properties of window dispersion increments of a myogram as a stochastic process
M. Sh. Khaziakhmetov, T. V. Zakharova, O. V. Shestakov
Sistemy i Sredstva Inform., 24:4 (2014),  86–99
18. Inversion of spherical Radon transform in the class of discrete random functions
O. V. Shestakov, M. G. Kuznetsova, I. A. Sadovoy
Inform. Primen., 7:4 (2013),  75–81
19. On the rate of convergence to the normal law of risk estimate for wavelet coefficients thresholding when using robust variance estimates
O. V. Shestakov
Inform. Primen., 7:2 (2013),  40–49
20. On the rate of convergence to the normal law of risk estimate for wavelet coefficients thresholding when using robust variance estimates
O. V. Shestakov
Inform. Primen., 6:2 (2012),  122–128
21. On the accuracy of normal approximation for risk estimate distribution when thresholding signal wavelet coefficients in case of unknown noise level
O. V. Shestakov
Sistemy i Sredstva Inform., 22:1 (2012),  142–152
22. About properties of estimation of average-square risk when regularizing the inverse of a linear homogeneous operator with adaptive thresholding treatment of the vaguelette-wavelet definition coefficients
O. V. Shestakov
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 1,  117–130
23. On the rate of convergence of sample median absolute deviation distribution to the normal law
O. V. Shestakov
Inform. Primen., 5:3 (2011),  74–79
24. Reconstruction of random function distributions in single photon emission tomography problems using trigonometric polynomial approximation of exponential multiplier
V. G. Ushakov, O. V. Shestakov
Inform. Primen., 5:3 (2011),  17–20
25. Normal approximation for distribution of risk estimate for wavelet coefficients thresholding when using sample variance
O. V. Shestakov
Inform. Primen., 4:4 (2010),  72–79
26. Asymptotic properties of risk estimate of wavelet-vaguelette coefficients thresholding in tomographic reconstruction problem
A. V. Markin, O. V. Shestakov
Inform. Primen., 4:2 (2010),  36–45
27. On stability of image reconstruction in the problems of emission tomography
O. V. Shestakov
Inform. Primen., 3:3 (2009),  47–51
28. Reconstruction of probabilistic characteristics of random functions in spect problems
V. G. Ushakov, O. V. Shestakov
Inform. Primen., 3:1 (2009),  29–33
29. Elimination of ectopic beats fromheart tachogramusing robust estimates
A. V. Markin, O. V. Shestakov
Inform. Primen., 2:2 (2008),  47–54
30. Fan-beam stochastic tomography
Oleg Shestakov
Sistemy i Sredstva Inform., 2008, no. special issue,  62–77
31. The application of wavelet expansions for solving the problems of computer tomography with a fan beam scanning schemes
V. G. Ushakov, O. V. Shestakov
Sistemy i Sredstva Inform., 2006, no. special issue,  77–84

Presentations in Math-Net.Ru
1. Probabilistic methods of tomographic images analysis and processing
O. V. Shestakov
Principle Seminar of the Department of Probability Theory, Moscow State University
September 12, 2012 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018