optimality conditions,
degenerated control systems,
covering mappings,
mathematical models in economics,
equilibrium prices.
Subject:
Optimal control theory, extremal problems, nonlinear analysis, theory of covering mappings and its applications in mathematical economics
Main publications:
A.V. Arutyunov, N.G. Pavlova, “Topological properties of attainability sets of linear systems”, Differential Equations, 40:11 (2004), 1645–1648
N.G. Pavlova, “2-regularity and 2-normality conditions for systems with impulsive controls”, Yugoslav Journal of Operations Research, 17:2 (2007), 149–164
A.V. Arutyunov, S.E. Zhukovskiy, N.G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 225–237
A.V. Arutyunov, N.G. Pavlova, A.A. Shananin, “Equilibrium prices in an economic equilibrium model”, Matem. Mod., 28:3 (2016), 3–22
N.G. Pavlova, A.O. Remizov, “On isomorphisms of pseudo-Euclidean spaces with signature (p,n − p) for p = 2,3”, Linear Algebra and its Applications, 2018, № 541, 60–80
A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169 (cited: 3) (cited: 4)
2.
N. G. Pavlova, A. O. Remizov, “Geodesics on hypersurfaces in Minkowski space: singularities of signature change”, Russian Math. Surveys, 66:6 (2011), 1201–1203 (cited: 3) (cited: 4)
3.
A. V. Arutyunov, N. G. Pavlova, A. A. Shananin, “New conditions for the existence of equilibrium prices”, Yugosl. J. Oper. Res., 28:1 (2018), 59–77 (cited: 2)
4.
N. G. Pavlova, A. O. Remizov, “A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces”, Advances in Singularities and Foliations: Geometry, Topology and Applications (Salvador, Brazil, 2015), Springer Proc. in Math. & Stat., 222, Springer, 2018, 135–155 (cited: 1)
5.
N. G. Pavlova, A. O. Remizov, “A complete classification of generic singularities of geodesic flows on 2-surfaces with pseudo-Riemannian metrics”, Russian Math. Surveys, 72:3 (2017), 577–579 (cited: 1) (cited: 1)
6.
N. G. Pavlova, A. O. Remizov, “Completion of the classification of generic singularities of geodesic
flows in two classes of metrics”, Izv. Math., 83:1 (2019), 104–123
7.
N. G. Pavlova, “Study of the Continuous-Time Open Dynamic Leontief Model as a Linear Dynamical Control System”, Differ. Equ., 55:1 (2019), 113–119
8.
N. G. Pavlova, A. O. Remizov, “On isomorphisms of pseudo-Euclidean spaces with signature (p,n-p) for p = 2,3”, Linear Algebra Appl., 541 (2018), 60–80
9.
N. G. Pavlova, “Zamknutost tekhnologicheskogo mnozhestva v dinamicheskikh proizvodstvennykh modelyakh”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 23:124 (2018), 666–673
10.
N. G. Pavlova, “Necessary conditions for closedness of the technology set in dynamical Leontief model”, Eleventh International Conference “Management of large-scale system development” (MLSD) (Moskva, 1–3 oktyabrya 2018, IPU RAN), IEEE, 2018, 1–4
11.
A. V. Arutyunov, N. G. Pavlova, A. A. Shananin, “Equilibrium prices in an economic equilibrium model”, Matem. Mod., 28:3 (2016), 3–22
12.
N. G. Pavlova, E. S. Belyakova, “O polozhenii ravnovesiya v modelyakh ekonomicheskogo ravnovesiya s tranzaktsionnymi izderzhkami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 21:1 (2016), 9–16
13.
N. G. Pavlova, O. M. Bozhinskaya, “O topologicheskikh svoistvakh tekhnologicheskogo mnozhestva v dinamicheskoi modeli Leonteva s nepreryvnym vremenem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 20:5 (2015), 1071–1078
14.
N. G. Pavlova, A. E. Bolotin, “Prilozhenie teorii nakryvayuschikh otobrazhenii k issledovaniyu modeli Errou–Debre s tranzaktsionnymi izderzhkami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 19:2 (2014), 357–364
15.
N. G. Pavlova, A. E. Bolotin, “Dostatochnye usloviya suschestvovaniya polozheniya ravnovesiya v modeli “spros-predlozhenie””, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 19:2 (2014), 349–356
16.
N. G. Pavlova, “Issledovanie ekonomicheskikh modelei metodami teorii nakryvayuschikh otobrazhenii”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 18:5-2 (2013), 2621–2624
17.
S. E. Zhukovskii, N. G. Pavlova, “O prilozhenii teorii nakryvayuschikh otobrazhenii k issledovaniyu nelineinoi modeli rynka”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 18:1 (2013), 47–48
18.
N. G. Pavlova, “Upravlyaemost traektorii v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 16:4 (2011), 1140–1142
19.
N. G. Pavlova, “Usloviya optimalnosti i upravlyaemosti dlya dinamicheskikh impulsnykh sistem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 15:4 (2010), 692–695
20.
N. G. Pavlova, “Lokalnaya upravlyaemost dinamicheskikh impulsnykh sistem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 14:4 (2009), 714–715
21.
N. G. Pavlova, “Neobkhodimye usloviya ekstremuma dlya 2-normalnykh protsessov”, Vestnik RUDN. Seriya: Matematika, informatika, fizika., 2009, no. 1, 5–13 "Vestnik RUDN"
22.
A. V. Arutyunov, N. G. Pavlova, “Lokalnaya upravlyaemost dinamicheskikh sistem s impulsnymi upravleniyami”, Differents. uravneniya, 44:8 (2008), 1145–1146
23.
N. G. Pavlova, “2-regularity and 2-normality conditions for systems with impulsive controls”, Yugosl. J. Oper. Res., 17:2 (2007), 149–164
24.
N. G. Pavlova, “Neobkhodimye i dostatochnye usloviya ekstremuma dlya zadach optimalnogo impulsnogo upravleniya”, Vestnik Voronezhskogo un-ta. Seriya: fizika, matematika, 2007, no. 1, 105–111 "Vestnik VGU"
25.
A. V. Arutyunov, N. G. Pavlova, “Topological properties of attainability sets of linear systems”, Differ. Equ., 40:11 (2004), 1645–1648
26.
A. N. Kurbatskii, N. G. Pavlova, A. O. Remizov, “Singularities of geodesic flows and lines in pseudo-Finsler spaces. III”, Tambov University Reports. Series: Natural and Technical Sciences, 22:3 (2017), 539–551
27.
N. G. Pavlova, “On the application of the results of covering mappings theory for the study of dynamical models of economic processes”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1304–1308
28.
N. G. Pavlova, A. O. Remizov, “Smooth functions, formal series, Whitney theorems, finished”, Math. Ed., 2017, no. 3(83), 13–27
29.
N. G. Pavlova, A. O. Remizov, “Smooth Functions, Formal Series, and Whitney Theorems”, Math. Ed., 2016, no. 3(79), 49–65