RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Zakharov, Valeriy Konstantinovich

Statistics Math-Net.Ru
Total publications: 69
Scientific articles: 69
Presentations: 2

Number of views:
This page:1232
Abstract pages:12656
Full texts:4517
References:1408
Professor
Doctor of physico-mathematical sciences
E-mail:
Keywords: Radon integral, Radon measure, regular measure, boundedness index of a functional, symmetrized functions, uniform functions, Radon bimeasure.

http://www.mathnet.ru/eng/person8371
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/189286

Publications in Math-Net.Ru
2015
1. V. K. Zakharov, O. A. Kuzenkov, “Optimal control in mathematical state model”, Zhurnal SVMO, 17:2 (2015),  34–38  mathnet  elib
2014
2. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Postclassical families of functions proper for descriptive and prescriptive spaces”, Fundam. Prikl. Mat., 19:6 (2014),  77–113  mathnet  mathscinet; J. Math. Sci., 221:3 (2017), 360–383
3. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Descriptive spaces and proper classes of functions”, Fundam. Prikl. Mat., 19:2 (2014),  51–107  mathnet  mathscinet; J. Math. Sci., 213:2 (2016), 163–200  scopus
4. V. K. Zakharov, T. V. Rodionov, “Naturalness of the Class of Lebesgue–Borel–Hausdorff Measurable Functions”, Mat. Zametki, 95:4 (2014),  554–563  mathnet  mathscinet  elib; Math. Notes, 95:4 (2014), 500–508  isi  scopus
2012
5. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices”, Fundam. Prikl. Mat., 17:1 (2012),  107–126  mathnet; J. Math. Sci., 185:3 (2012), 417–429  scopus
2011
6. V. K. Zakharov, A. D. Yashin, “Finite Axiomatizability of Local Set Theory”, Mat. Zametki, 90:1 (2011),  70–86  mathnet  mathscinet; Math. Notes, 90:1 (2011), 64–78  isi  scopus
2010
7. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of Radon integrals as linear functionals”, Fundam. Prikl. Mat., 16:8 (2010),  87–161  mathnet  mathscinet; J. Math. Sci., 185:2 (2012), 233–281  scopus
8. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Uspekhi Mat. Nauk, 65:4(394) (2010),  153–178  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 65:4 (2010), 741–765  isi  elib  scopus
2008
9. V. K. Zakharov, T. V. Rodionov, “A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions”, Mat. Zametki, 84:6 (2008),  809–824  mathnet  mathscinet; Math. Notes, 84:6 (2008), 756–770  isi  scopus
10. V. K. Zakharov, T. V. Rodionov, “Classification of Borel sets and functions for an arbitrary space”, Mat. Sb., 199:6 (2008),  49–84  mathnet  mathscinet  zmath  elib; Sb. Math., 199:6 (2008), 833–869  isi  scopus
11. V. K. Zakharov, A. V. Mikhalev, A. A. Seredinskii, “Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. II”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, 5,  11–20  mathnet  mathscinet  zmath
12. V. K. Zakharov, “Hausdorff theorems on measurable functions and a new class of uniform functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, 1,  3–8  mathnet  mathscinet  zmath
2007
13. E. I. Bunina, V. K. Zakharov, “Formula-inaccessible cardinals and a characterization of all natural models of Zermelo–Fraenkel set theory”, Izv. RAN. Ser. Mat., 71:2 (2007),  3–28  mathnet  mathscinet  zmath  elib; Izv. Math., 71:2 (2007), 219–245  isi  elib  scopus
14. V. K. Zakharov, A. V. Mikhalev, A. A. Seredinskii, “Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. I”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, 5,  6–13  mathnet  mathscinet  zmath
2006
15. V. K. Zakharov, A. A. Seredinskii, “A new characterization of the Riemann integral and the functions integrable by Riemann”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, 2,  16–23  mathnet  mathscinet  zmath
2005
16. E. I. Bunina, V. K. Zakharov, “Canonical form of Tarski sets in Zermelo–Fränkel set theory”, Mat. Zametki, 77:3 (2005),  323–333  mathnet  mathscinet  zmath  elib; Math. Notes, 77:3 (2005), 297–306  isi  scopus
17. V. K. Zakharov, “Local set theory”, Mat. Zametki, 77:2 (2005),  194–212  mathnet  mathscinet  zmath  elib; Math. Notes, 77:2 (2005), 177–193  isi  scopus
18. V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Tr. Mat. Inst. Steklova, 248 (2005),  106–116  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 248 (2005), 101–110
2004
19. V. K. Zakharov, A. A. Seredinskii, “A new characterization of Riemann-integrable functions”, Fundam. Prikl. Mat., 10:3 (2004),  73–83  mathnet  mathscinet  zmath  elib; J. Math. Sci., 139:4 (2006), 6708–6714  scopus
2003
20. E. I. Bunina, V. K. Zakharov, “A canonical form for supertransitive standard models in Zermelo–Fraenkel set theory”, Uspekhi Mat. Nauk, 58:4(352) (2003),  143–144  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:4 (2003), 782–783  isi  scopus
2002
21. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space. II”, Izv. RAN. Ser. Mat., 66:6 (2002),  3–18  mathnet  mathscinet  zmath; Izv. Math., 66:6 (2002), 1087–1101
22. V. K. Zakharov, “Classification of Borel sets and functions in the general case”, Uspekhi Mat. Nauk, 57:4(346) (2002),  175–176  mathnet  mathscinet  zmath; Russian Math. Surveys, 57:4 (2002), 822–823  isi  scopus
2001
23. V. K. Zakharov, A. V. Mikhalev, “Connections between the integral Radonean representations for locally compact and Hausdorff spaces”, Fundam. Prikl. Mat., 7:1 (2001),  33–46  mathnet  mathscinet  zmath
24. V. K. Zakharov, A. V. Mikhalev, A. A. Seredinskii, “Algebraic description of rings of continuous functions”, Uspekhi Mat. Nauk, 56:1(337) (2001),  163–164  mathnet  mathscinet  zmath; Russian Math. Surveys, 56:1 (2001), 187–188  isi  scopus
1999
25. V. K. Zakharov, A. V. Mikhalev, “A two-sorted theory of classes and sets, admitting sets of propositional formulas”, Fundam. Prikl. Mat., 5:2 (1999),  417–435  mathnet  mathscinet  zmath
26. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space”, Izv. RAN. Ser. Mat., 63:5 (1999),  37–82  mathnet  mathscinet  zmath; Izv. Math., 63:5 (1999), 881–921  isi
1998
27. V. K. Zakharov, A. V. Mikhalev, “On a conception of a mathematical system”, Fundam. Prikl. Mat., 4:3 (1998),  927–935  mathnet  mathscinet  zmath
1997
28. V. K. Zakharov, A. V. Mikhalev, “Integral representation for Radon measures on arbitrary Hausdorf space”, Fundam. Prikl. Mat., 3:4 (1997),  1135–1172  mathnet  mathscinet  zmath
29. V. K. Zakharov, A. V. Mikhalev, “Radon problem for regular measures on an arbitrary Hausdorf space”, Fundam. Prikl. Mat., 3:3 (1997),  801–808  mathnet  mathscinet  zmath
1995
30. V. K. Zakharov, “Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions”, Fundam. Prikl. Mat., 1:1 (1995),  161–176  mathnet  mathscinet  zmath  elib
31. V. K. Zakharov, “Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images”, Izv. RAN. Ser. Mat., 59:4 (1995),  15–60  mathnet  mathscinet  zmath; Izv. Math., 59:4 (1995), 677–720  isi
32. V. K. Zakharov, “Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls”, Mat. Sb., 186:12 (1995),  81–118  mathnet  mathscinet  zmath; Sb. Math., 186:12 (1995), 1773–1809  isi
1994
33. V. K. Zakharov, “The Kaplan extension of the ring and Banach algebra of continuous functions as a divisible hull”, Izv. RAN. Ser. Mat., 58:6 (1994),  51–68  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 45:3 (1995), 477–493  isi
1993
34. V. K. Zakharov, “The countably divisible extension and the Baire extension of the ring and the Banach algebra of continuous functions as a divisible hull”, Algebra i Analiz, 5:6 (1993),  121–138  mathnet  mathscinet  zmath; St. Petersburg Math. J., 5:6 (1994), 1141–1156
35. V. K. Zakharov, “Preimages related to the complete ring of quotients, regular completion, and Hausdorff–Sierpicski and Baire extensions”, Uspekhi Mat. Nauk, 48:5(293) (1993),  171–172  mathnet  mathscinet  zmath; Russian Math. Surveys, 48:5 (1993), 189–190
1992
36. V. K. Zakharov, “Arens extension of a ring of continuous functions”, Algebra i Analiz, 4:1 (1992),  135–153  mathnet  mathscinet  zmath; St. Petersburg Math. J., 4:1 (1993), 131–148
37. V. K. Zakharov, “The Gordon preimage of an Aleksandrov space as an enclosed covering”, Izv. RAN. Ser. Mat., 56:2 (1992),  427–448  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 40:2 (1993), 405–424  isi
1991
38. V. K. Zakharov, “The regular and the Baire extension of the ring of continuous functions as rings of quotients of the same type”, Uspekhi Mat. Nauk, 46:6(282) (1991),  209–210  mathnet  mathscinet  zmath; Russian Math. Surveys, 46:6 (1991), 235–236  isi
1990
39. V. K. Zakharov, “Universal measurable extension and the arens extension of a Banach algebra of continuous functions”, Funktsional. Anal. i Prilozhen., 24:2 (1990),  83–84  mathnet  mathscinet  zmath; Funct. Anal. Appl., 24:2 (1990), 153–154  isi
40. V. K. Zakharov, “Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them”, Izv. Akad. Nauk SSSR Ser. Mat., 54:5 (1990),  928–956  mathnet  mathscinet  zmath; Math. USSR-Izv., 37:2 (1991), 273–302
41. V. K. Zakharov, “The connection between the complete ring of quotients of the ring of continuous functions, regular completion, and Hausdorff–Sierpiсski extensions”, Uspekhi Mat. Nauk, 45:6(276) (1990),  133–134  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:6 (1990), 177–178  isi
42. V. K. Zakharov, “Classical extensions of a vector lattice of continuous functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, 4,  15–18  mathnet  mathscinet  zmath
43. V. K. Zakharov, “Topological preimages that correspond to classical extensions of a ring of continuous functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, 1,  44–47  mathnet  mathscinet  zmath
1987
44. V. K. Zakharov, “$cr$-envelopes of a ring of continuous functions”, Dokl. Akad. Nauk SSSR, 294:3 (1987),  531–534  mathnet  mathscinet  zmath
1986
45. V. K. Zakharov, “Extensions of vector lattices of continuous functions”, Dokl. Akad. Nauk SSSR, 288:6 (1986),  1297–1301  mathnet  mathscinet  zmath
1984
46. V. K. Zakharov, “Two classical extensions of the vector lattice of continuous functions”, Funktsional. Anal. i Prilozhen., 18:2 (1984),  92–93  mathnet  mathscinet  zmath; Funct. Anal. Appl., 18:2 (1984), 165–167  isi
1982
47. V. K. Zakharov, “Hyper-Stonian absolute of a completely regular space”, Dokl. Akad. Nauk SSSR, 267:2 (1982),  280–283  mathnet  mathscinet  zmath
48. V. K. Zakharov, “Functional representation of the regular completion of Utumi torsion-free modules”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, 5,  22–29  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 26:5 (1982), 26–34
49. V. K. Zakharov, “Functional characterization of the absolute vector lattices of functions with the Baire property and of quasinormal functions, and modules of quotients of continuous functions”, Tr. Mosk. Mat. Obs., 45 (1982),  68–104  mathnet  mathscinet  zmath
1981
50. A. I. Veksler, V. K. Zakharov, A. V. Koldunov, “Spaces of continuous extended functions”, Dokl. Akad. Nauk SSSR, 256:6 (1981),  1301–1305  mathnet  mathscinet  zmath
51. V. K. Zakharov, “Characterization of the hyper-Stonian cover of a compact Hausdorff space”, Funktsional. Anal. i Prilozhen., 15:4 (1981),  79–80  mathnet  mathscinet  zmath; Funct. Anal. Appl., 15:4 (1981), 297–298  isi
52. V. K. Zakharov, “Divisibility on countably dense ideals and countable orthocompleteness of modules”, Mat. Zametki, 30:4 (1981),  481–496  mathnet  mathscinet  zmath; Math. Notes, 30:4 (1981), 731–738  isi
53. V. K. Zakharov, “Characterization of orthocompleteness and divisibility of modules with the help of an inner order”, Mat. Zametki, 30:1 (1981),  27–43  mathnet  mathscinet  zmath; Math. Notes, 30:1 (1981), 499–507  isi
1980
54. V. K. Zakharov, A. V. Koldunov, “The sequential absolute and its characterizations”, Dokl. Akad. Nauk SSSR, 253:2 (1980),  280–284  mathnet  mathscinet  zmath
55. V. K. Zakharov, “Functional representation of the orthogonal completion and the divisible envelope of Utumi-torsion-free modules”, Mat. Zametki, 27:3 (1980),  333–343  mathnet  mathscinet  zmath; Math. Notes, 27:3 (1980), 167–172  isi
56. V. K. Zakharov, “The functional representation of the uniform completion of the maximal and of the countably dense module of fractions of the module of continuous functions”, Uspekhi Mat. Nauk, 35:4(214) (1980),  187–188  mathnet  mathscinet  zmath; Russian Math. Surveys, 35:4 (1980), 200–201  isi
57. A. I. Veksler, V. K. Zakharov, “Topological spaces and vector lattices”, Uspekhi Mat. Nauk, 35:3(213) (1980),  153–157  mathnet  mathscinet  zmath; Russian Math. Surveys, 35:3 (1980), 188–192  isi
1978
58. V. K. Zakharov, “The construction of all locally bicompact and all locally bicompact paracompact extensions”, Uspekhi Mat. Nauk, 33:6(204) (1978),  209  mathnet  mathscinet  zmath; Russian Math. Surveys, 33:4 (1978), 267
1977
59. V. K. Zakharov, “Category characterizations of completions of vector lattices”, Dokl. Akad. Nauk SSSR, 234:5 (1977),  1012–1015  mathnet  mathscinet  zmath
60. V. K. Zakharov, “The divisible hull and orthocompletion of lattice ordered modules”, Mat. Sb. (N.S.), 103(145):3(7) (1977),  346–357  mathnet  mathscinet  zmath; Math. USSR-Sb., 32:3 (1977), 293–303  isi
1976
61. V. K. Zakharov, “Regular completion of modules”, Mat. Zametki, 19:6 (1976),  843–851  mathnet  mathscinet  zmath; Math. Notes, 19:6 (1976), 496–500
62. V. K. Zakharov, “The divisible hull of $l$-modules”, Uspekhi Mat. Nauk, 31:1(187) (1976),  249–250  mathnet  mathscinet  zmath
1973
63. V. K. Zakharov, “The functional representation of the injective envelope, and tests for the injectivity of certain modules”, Izv. Vyssh. Uchebn. Zaved. Mat., 1973, 9,  27–30  mathnet  mathscinet  zmath
64. V. K. Zakharov, “The Cousin problem for extended continuous functions on an extremally disconnected space”, Izv. Vyssh. Uchebn. Zaved. Mat., 1973, 3,  37–43  mathnet  mathscinet  zmath
1968
65. V. K. Zakharov, O. V. Sarmanov, “The law of distribution of the number of runs in a homogeneous Markov chain”, Dokl. Akad. Nauk SSSR, 179:3 (1968),  526–528  mathnet  mathscinet
1965
66. V. K. Zakharov, O. V. Sarmanov, “Consolidation of states in a Markov chain and stationary variation of the spectrum”, Dokl. Akad. Nauk SSSR, 160:4 (1965),  762–764  mathnet  mathscinet  zmath
1960
67. O. V. Sarmanov, V. K. Zakharov, “Maximum coefficients of multiple correlation”, Dokl. Akad. Nauk SSSR, 130:2 (1960),  269–271  mathnet  mathscinet  zmath
1957
68. V. K. Zakharov, “Imbedding theorems for a space having its metric degenerating at a finite number of internal points within a bounded domain”, Dokl. Akad. Nauk SSSR, 114:5 (1957),  938–941  mathnet  mathscinet  zmath
69. V. K. Zakharov, “The first boundary problem for an elliptical type of equations of order four, degenerating at the domain boundary”, Dokl. Akad. Nauk SSSR, 114:4 (1957),  694–697  mathnet  mathscinet  zmath
70. V. K. Zakharov, “Imbedding theorems for a space having its metric degenerating on a rectilinear portion of the domain boundary”, Dokl. Akad. Nauk SSSR, 114:3 (1957),  468–471  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Архитектура современной математики
V. K. Zakharov, T. V. Rodionov
Infinite dimensional analysis and mathematical physics
December 16, 2019 18:30
2. On a new type of weak compactness of sets of bounded Radon measures on arbitrary Hausdorff spaces
V. K. Zakharov, T. V. Rodionov
Principle Seminar of the Department of Probability Theory, Moscow State University
December 11, 2019 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020