RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Ilyasov, Yavdat Shavkatovich

Total publications: 84 (84)
in MathSciNet: 61 (61)
in zbMATH: 38 (38)
in Web of Science: 38 (38)
in Scopus: 28 (28)
Cited articles: 46
Citations in Math-Net.Ru: 46
Citations in Web of Science: 255
Citations in Scopus: 118
Presentations: 1

Number of views:
This page:2699
Abstract pages:3745
Full texts:1416
References:431
Professor
Doctor of physico-mathematical sciences (2000)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 10.02.1959
Phone: 7 (3472) 72 59 36
Fax: 7 (3472) 72 59 36
E-mail:
Website: http://matem.anrb.ru
Keywords: nonlinear elliptic boundary value problems, bifurcations of solutions, blow-up solutions, nonlinear parabolic problems, p-Laplacian, Yamabe problem, compactons, Rayleigh quotient, Collatz-Wielandt formula
UDC: 517.9, 517.95

Subject:

existence and uniqueness of solutions of nonlinear differential equations, spectral theory of linear and nonlinear operators, finding branches of solutions of nonlinear partial differential equations, development of variational methods for studying nonlinear equations, development variational methods for finding critical characteristics of nonlinear models, development of new approaches for finding bifurcations of solutions of nonlinear equations, development of new approaches for the numerical analysis of critical phenomena in nonlinear models , mathematical physics, construction of a generalized Collatz-Wielandt formula and a generalized Rayleigh quotient for nonlinear problems, development of the theory of optimal inverse spectral problems, development of variational methods for studying special classes of solutions, including solutions with compact supports and free boundaries, blow-up solutions, ground states

Biography

1976–1981: undergraduate course at the Lomonosov Moscow State University, Faculty of Mechanics and Mathematics,
1981–1985: PhD course at the Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Differential Equations,
1997–1999: Research Fellow (Doctorant), Steklov Mathematical Institute, Moscow.

   
Main publications:
  1. Ilyasov Y.Sh., “Bifurcation calculus by the extended functional method”, Funct. Anal. Appl., 41:1 (2007), 18–30  crossref  mathscinet  zmath
  2. Ilyasov Y., “A duality principle corresponding to the parabolic equations”, Physica D, 237:5 (2008), 692–698  crossref  mathscinet  adsnasa
  3. Ilyasov Y., “On nonlocal existence results for elliptic equations with convex-concave nonlinearities”, Nonlinear Analysis, 61:1-2 (2005), 211–236  crossref  mathscinet  zmath
  4. Ilyasov Y., Runst T., “On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems”, Calculus Var. & Part. Diff. Eq., 22:1 (2005), 101–127  crossref  mathscinet  zmath
  5. Ilyasov Y., “On positive solutions of indefinite elliptic equations”, C. R. Acad. Sci. Paris S\er. I Math., 333:6 (2001), 533–538  crossref  mathscinet  zmath  adsnasa

http://www.mathnet.ru/eng/person8765
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:ilyasov.yavdat-sh
https://mathscinet.ams.org/mathscinet/MRAuthorID/233622
http://orcid.org/0000-0002-6310-9164
https://www.researchgate.net/profile/Yavdat_Ilyasov2
https://arxiv.org/a/Yavdat

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2019
1. Y, Sh. Ilyasov, N. F. Valeev, “On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem”, Journal of Differential Equations, 266:8 (2019), 4533-4543 , arXiv: 1803.01495  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 1)
2. Vladimir Bobkov, Pavel Drabek, Yavdat Ilyasov, “On full Zakharov equation and its approximations”, Physica D: Nonlinear Phenomena, 8:23 (2019), 132-168 (Published online) , arXiv: 1801.00803.  crossref  isi  scopus
3. Vladimir Bobkov, Pavel Drábek, Yavdat Ilyasov, “On partially free boundary solutions for elliptic problems with non-Lipschitz nonlinearities”, Applied Mathematics Letters, 95 (2019), 23-28 , arXiv: 1812.08018  crossref  mathscinet  isi  scopus
4. J. I. Díaz, J. Hernández, Y. Sh. Ilyasov, “On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets”, Advances in Nonlinear Analysis, 9:1 (2019), 1046-1065 , arXiv: 1808.03931  crossref  isi (cited: 3)  scopus (cited: 2)
5. Yavdat Ilyasov, Nurmukhamet Valeev, On an optimal potential of Schrödinger operator with $m$ prescribed eigenvalue, 2019 , 8 pp., arXiv: 1908.07876
6. Marcos L. M. Carvalho, Yavdat Sh. Ilyasov, Carlos Alberto Santos, Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients, 2019 , 18 pp., arXiv: 1906.07759

   2018
7. Yavdat Ilyasov; Kaye Silva, “On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method”, Proceedings of the American Mathematical Society, 146:7 (2018), 925–935 , arXiv: arXiv:1704.02477  crossref
8. N. F. Valeev, Ya. Sh. Il'yasov, “On an Inverse Optimization Spectral Problem and a Corresponding Nonlinear Boundary-Value Problem”, Math. Notes, 104:4 (2018), 601–605  mathnet  crossref  crossref  isi (cited: 1)  elib  scopus
9. Ufa Math. J., 10:4 (2018), 122–128  mathnet  crossref  mathscinet  isi  scopus

   2017
10. Ya. Sh. Il'yasov, “On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass”, Comput. Math. Math. Phys., 57:3 (2017), 497–514  mathnet  crossref  crossref  zmath  isi (cited: 1)  elib  scopus (cited: 1)
11. Yavdat Ilyasov, “On extreme values of Nehari manifold method via nonlinear Rayleighs Quotient”, Topological Methods in Nonlinear Analysis, 49:2 (2017), 683-714  crossref  mathscinet  zmath
12. Y. Sh. Il'yasov, E. E. Kholodnov, “On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity”, Ufa Math. Journal, 9:4 (2017), 44–53  mathnet  crossref  isi  elib  scopus
13. Yavdat Ilyasov, “Bifurcation and blow-up results for equations with $p$-Laplacian and convex-concave nonlinearity”, Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), 96 (2017), 1-12  crossref  mathscinet  isi  scopus

   2016
14. V. Bobkov, Ya. Il'yasov, “Maximal existence domains of positive solutions for two-parametric systems of elliptic equations”, Complex Variables and Elliptic Equations, 61:5 (2016), 587–607 , Taylor & Francis  crossref  mathscinet  isi (cited: 3)  scopus (cited: 3)
15. Ya. Il'yasov, A. Ivanov, “Computation of maximal turning points to nonlinear equations by nonsmooth optimization”, Optimization Methods and Software, 31:1 (2016), 1–23 , Taylor & Francis  crossref  mathscinet  isi (cited: 2)  scopus (cited: 2)
16. Ya. Il'yasov, “On critical exponents curve for nonlinear elliptic equations in zero mass case”, 2016, arXiv: 1605.08142
17. Jesus Ildefonso Diaz, Jesus Hernandez and Yavdat Il'yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\geq 3$”, Special Issue of Chinese Annals of Mathematics (CAM) in honour of Haim Brezis., 38B:4 (2016), 1–34  crossref  mathscinet  zmath  isi (cited: 7)  scopus (cited: 7)

   2015
18. Ya. Il'yasov, “On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient”, 2015, arXiv: 1509.08019  zmath
19. J. I. Díaz, J. Hernández, Ya. Ilyasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonlinear Analysis: Theory, Methods & Applications, 119 (2015), 484–500 , Pergamon  crossref  mathscinet  isi (cited: 11)  scopus (cited: 11)

   2014
20. Ya. Il'yasov, A. Ivanov, “Computation of maximal turning points by a variational approach”, 2014, arXiv: 1404.2810  zmath
21. Vladimir Bobkov, Yavdat Il'yasov, Maximal existence domains of positive solutions for two-parametric systems of elliptic equations, 2014 , 15 pp., arXiv: 1406.5275
22. Ya. Il'yasov, “Pohozaevs Identity and Compact Supported Solutions”, The Seventh International Conference on Differential and Functional Differential Equation (Peoples Friendship University of Russia, Moscow, Russia, August 2229, 2014), Peoples' Friendship University of Russia,, Moscow, 2014, 51-52 http://dfde2014.mi.ras.ru/
23. Yavdat Ilyasov, “Precise range for stable and blow-up solutions to equations with p-Laplacian and supercritical nonlinearities”, Abstracts Book. The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 44 (Madrid, Spain, July 07 - July 11, 2014), AIMS, 2014, 189 https://www.aimsciences.org/conferences/2014/abstracts-book-finalized-2014-06-10.pdf
24. Yavdat Ilyasov, “A new geometrical concept in the finding bifurcations. Generalized Collatz-Wielandt formula”, Abstracts Book. The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 33 (Madrid, Spain, July 07 - July 11, 2014), AIMS, 2014, 148 https://www.aimsciences.org/conferences/2014/abstracts-book-finalized-2014-06-10.pdf

   2013
25. A. A. Ivanov, Ya. Sh. Il'yasov, “Finding bifurcations for solutions of nonlinear equations by quadratic programming methods”, Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013), 350–364  mathnet  crossref  zmath  elib
26. V. Bobkov, Ya. Il'yasov, “Asymptotic behaviour of branches for ground states of elliptic systems”, Electronic Journal of Differential Equations, 2013:212 (2013), 1–21  mathscinet  zmath  isi (cited: 5)
27. Yavdat Il'yasov, “Nehari manifolds and fibering methods. Parametric analysis”, Nonlinear Analysis Plzen 2013 (Pilsen, Czech Republic, August 23-24, 2013), University of West Bohemia, Pilzen, Czech Republic, 2013, 14

   2012
28. Ya. Sh. Il'yasov, P. Taká{\v}, “Optimal $W\sp {2,2}\sb loc$-regularity, ohozhaev's identity, and nonexistence of weak solutions to some quasilinear elliptic equations”, J. Differential Equations, 252:3 (2012), 2792–2822  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  scopus (cited: 8)

   2011
29. Ya. Il'yasov, Th. Runst, “Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity”, Complex Variables and Elliptic Equations, 56:10–11 (2011), 945–954 , Taylor & Francis  crossref  mathscinet  isi (cited: 5)  scopus (cited: 5)
30. Ya. Il'yasov, “The method of the extended functional and solvability of elliptic problems with supercritical exponents”, Lecture Notes of 8Th International Conference on Function Spaces, Differential Operators, Nonlinear Analysis (Fsdona–2011),, 2011
31. Ya. Il'yasov, “On critical exponent for an elliptic equation with non-ipschitz nonlinearity”, Discrete Contin. Dyn. Syst., 2011, no. Dynamical Systems, Differential Equations and Applications. 8Th Aims Conference. Suppl. Vol. i, 698–706  mathscinet  zmath

   2010
32. Ya. Il'yasov, Th. Runst, “An anti-maximum principle for degenerate elliptic boundary value problems with indefinite weights”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 897–910 , Taylor & Francis  crossref  mathscinet  isi  scopus
33. Ya. Il'yasov, Yo. Egorov, “Hopf boundary maximum principle violation for semilinear elliptic equations”, Nonlinear Analysis: Theory, Methods & Applications, 72:7–8 (2010), 3346–3355 , Elsevier  crossref  mathscinet  isi (cited: 19)  scopus (cited: 17)
34. Yavdat Ilyasov, “Existence of Compactons for Elliptic Equations with Autonomous Nonlinearity”, The 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden University of Technology Germany, May 25 - 28, 2010), Dresden University of Technology, 2010, 89 https://aimsciences.org/AIMS-Conference/2010/  mathscinet

   2009
35. Ya. Il'yasov, Th. Runst, A. Youssfi, “On the existence of pair positive–negative solutions for resonance problems”, Nonlinear Analysis: Theory, Methods & Applications, 70:10 (2009), 3461–3471 , Elsevier  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
36. Ya. S. Il'yasov, “Constructive and algorithmic concept of the bifurcations finding to solutions of the nonlinear equations”, International Conference on Interdisciplinary Mathematical and Statistical Techniques, 2009
37. Ya. Il'yasov, Yo. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, 2009, arXiv: 0901.4191

   2008
38. Ya. Il'yasov, “A duality principle corresponding to the parabolic equations”, Physica D: Nonlinear Phenomena, 237:5 (2008), 692–698 , Elsevier  crossref  mathscinet  adsnasa  isi (cited: 4)  scopus (cited: 5)

   2007
39. Ya. Sh. Il'yasov, “Bifurcation Calculus by the Extended Functional Method”, Funct. Anal. Appl., 41:1 (2007), 18–30  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 11)  elib (cited: 7)  elib (cited: 7)  scopus (cited: 11)
40. Yo. V. Egorov, Ya. Il'yasov, “On conformal invariants for elliptic systems with multiple critical exponents”, Annals of Global Analysis and Geometry, 32:1 (2007), 39–66 , Kluwer Academic Publishers  crossref  mathscinet  isi (cited: 2)  scopus (cited: 2)
41. Ya. Il'yasov, “Bifurcation Calculus by the Extended Functional Method and Its Applications”, Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, 2007
42. Yu. V. Egorov, Ya. Il'yasov, “On multiple solutions for elliptic boundary value problem with two critical exponents”, Harmonic, wavelet and $p$-adic analysis, World Sci. Publ., Hackensack, NJ, 2007, 113–139  crossref  mathscinet  zmath  scopus (cited: 1)
43. Ya. Il'yasov, “On calculation of the bifurcations by the fibering approach”, Harmonic, wavelet and $p$-adic analysis, World Sci. Publ., Hackensack, NJ, 2007, 141–155  crossref  mathscinet  zmath  scopus (cited: 2)

   2006
44. Yu. V. Egorov, Ya. Sh. Il'yasov, “On multiple solutions of the Yamabe problem”, Dokl. Akad. Nauk, 409:1 (2006), 19–21  mathnet  mathscinet  zmath

   2005
45. Ya. Sh. Il'yasov, “On Global Positive Solutions of Parabolic Equations with a Sign-Indefinite Nonlinearity”, Differ. Equ., 41:4 (2005), 548–556  mathnet  crossref  mathscinet  elib
46. Ya. Il'yasov, N. Sari, “Solutions of minimal period for a Hamiltonian system with a changing sign potential”, Commun. Pure Appl. Anal, 4:1 (2005), 175–185  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 2)
47. L. Cherfils, Ya. Ilyasov, “On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian”, Commun. Pure Appl. Anal, 4:1 (2005), 9–22  crossref  mathscinet  zmath  isi (cited: 117)  elib (cited: 39)
48. Ya. Il'yasov, “On nonlocal existence results for elliptic equations with convex-concave nonlinearities”, Nonlinear Analysis: Theory, Methods & Applications, 61:1–2 (2005), 211–236 , Elsevier  crossref  mathscinet  isi (cited: 26)  scopus (cited: 27)
49. Ya. Sh. Il'yasov, “Minimax values and parabolic equations with a sign changing nonlinearity”, Dokl. Akad. Nauk, 405:2 (2005), 166–168  mathnet  mathscinet
50. Ya. Il'yasov, Th. Runst, “On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems”, Calculus of Variations and Partial Differential Equations, 22:1 (2005), 101–127 , Springer  crossref  mathscinet  isi (cited: 9)  scopus (cited: 10)

   2004
51. Ya. Il'yasov, Th. Runst, “On positive solutions of indefinite inhomogeneous Neumann boundary value problems”, Topological Methods in Nonlinear Analysis, 24:1 (2004), 41–67 , Juliusz P. Schauder Centre for Nonlinear Studies  crossref  mathscinet

   2003
52. Ya. Il'yasov, Th. Runst, “Positive solutions for indefinite inhomogeneous Neumann elliptic problems”, Electronic Journal of Differential Equations, 2003:57 (2003), 1–21 , Texas State University-San Marcos  mathscinet
53. Ya. Sh. Il'yasov, “The fibering method”, Nonlinear analysis and nonlinear differential equations (ussian), FizMatLit, Moscow, 2003, 197–243  mathscinet  zmath
54. Ya. Il'yasov, Th. Runst, “Nonlocal investigations of inhomogeneous indefinite elliptic equations via variational methods”, Function spaces, differential operators and nonlinear analysis (eistungen, 2001), Birkhäuser, Basel, 2003, 342–352  mathscinet
55. Ya. Sh. Il'yasov, “On nonlocal investigations of families of elliptic equations with convex-concave nonlinearities”, Dokl. Akad. Nauk, 392:5 (2003), 603–605  mathnet  mathscinet  zmath

   2002
56. Ya. Sh. Il'yasov, “The Pokhozhaev Identity and the Fibering Method”, Differ. Equ., 38:10 (2002), 1453–1459  mathnet  crossref  mathscinet
57. Ya. Sh. Il'yasov, “Non-local investigation of bifurcations of solutions of non-linear elliptic equations”, Izv. Math., 66:6 (2002), 1103–1130  mathnet  crossref  crossref  mathscinet  zmath

   2001
58. Ya. Sh. Il'yasov, “On a Procedure of Projective Fibering of Functionals on Banach Spaces”, Proc. Steklov Inst. Math., 232 (2001), 150–156  mathnet  mathscinet  zmath
59. Ya. Il'yasov, “On positive solutions of indefinite elliptic equations”, Comptes Rendus de l'Acad mie des Sciences-Series I-Mathematics, 333:6 (2001), 533–538 , Elsevier  mathscinet  adsnasa  isi (cited: 14)
60. Ya. Sh. Il'yasov, T. Runst, “On the existence of multiple positive solutions for a class of nonlinear eumann boundary value problems”, Dokl. Akad. Nauk, 376:3 (2001), 300–302  mathnet  mathscinet  zmath

   2000
61. Ya. Il'yasov, “Action as function of period for ground states of semilinear elliptic equations”, NoDEA Nonlinear Differential Equations Appl., 7:4 (2000), 369–387  crossref  mathscinet  zmath  isi  scopus
62. Ya. Il'yasov, Th. Runst, “Existence and uniqueness theorems for equations of the type $Au(x)=g(x,u,Du)$ with degenerate and nonlinear boundary conditions”, Function spaces, differential operators and nonlinear analysis (udasjärvi, 1999), Acad. Sci. Czech Repub., Prague, 2000, 143–148  mathscinet  zmath
63. Ilyasov, Yavdat Shavkatovich., Nelokalnye issledovaniya bifurkatsii dlya semeistv nelineinykh ellipticheskikh uravnenii, Diss.dokt. fiz.-matem. nauk : 01.01.02, Bashkirskii gosudarstvennyi universitet, Ufa, 2000 , 272 pp. http://search.rsl.ru/ru/record/01000322255

   1999
64. Ya. Sh. Il'yasov, “On the existence of conformally equivalent metrics for Riemannian manifolds with boundary”, Differ. Equ., 35:3 (1999), 335–340  mathnet  mathscinet
65. Ya. Sh. Il'yasov, “On a condition necessary for the existence of positive solutions to a class of equations with $p$-Laplace operator”, Math. Notes, 66:2 (1999), 249–251  mathnet  crossref  crossref  mathscinet  zmath  isi
66. Th. Runst, Ya. Il'yasov, “On equations of the type $Au=g(x,u,Du)$ with degenerate and nonlinear boundary conditions”, Tsukuba J. Math., 23:3 (1999), 505–528  crossref  mathscinet  zmath
67. Ya. Sh. Il'yasov, “A theorem on the absence of positive solutions for semilinear elliptic equations”, Dokl. Akad. Nauk, 364:1 (1999), 11–13  mathnet (cited: 1)  mathscinet  zmath  isi

   1998
68. Ya. Sh. Il'yasov, “On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem”, Math. Notes, 64:4 (1998), 471–475  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)

   1997
69. Ya. Sh. Il'yasov, “On the manifold of solutions of semilinear elliptic equations satisfying the Pokhozhaev identity. II”, Differ. Equ., 33:12 (1997), 1673–1678  mathnet  mathscinet

   1996
70. Ya. Sh. Il'yasov, “The Euler functional for equations with the $p$-Laplacian as a function of a spectral parameter”, Proc. Steklov Inst. Math., 214 (1996), 175–186  mathnet  mathscinet  zmath
71. Ya. Sh. Il'yasov, “On the manifold of solutions of semilinear elliptic equations satisfying the Pokhozhaev identity. I”, Differ. Equ., 32:8 (1996), 1067–1074  mathnet  mathscinet

   1995
72. Ya. Sh. Il'yasov, “On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$”, Izv. Math., 59:1 (1995), 101–119  mathnet  crossref  mathscinet  zmath  isi
73. Ya. Sh. Il'yasov, “An equation that arises in studying ground state solutions to semilinear elliptic equations”, Math. Notes, 58:3 (1995), 996–1000  mathnet  crossref  mathscinet  zmath  isi
74. Ya. Sh. Il'yasov, “On function of action on the manifold of ground state solutions”, Theoret. and Math. Phys., 105:3 (1995), 1546–1555  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib
75. Ya. Sh. Il'yasov, “On existence and non-existence of periodic solutions for the equations $-\Delta u=g(u)$ in $\bold R\sp {N+1}$”, Dynam. Systems Appl., 4:4 (1995), 529–548  mathscinet  zmath
76. Ya. Sh. Il'yasov, “On the manifold of solutions of “ground state” type of semilinear elliptic equations”, Dokl. Akad. Nauk, 342:4 (1995), 452–454  mathnet  mathscinet  zmath  isi

   1994
77. Ya. Sh. Il'yasov, “An approximation of solutions of “ground state” type of the equations $-\Delta u=g(u)$ in $\mathbf R^{N+1}$”, Differ. Equ., 30:4 (1994), 570–579  mathnet  mathscinet
78. Ya. Sh. Il'yasov, “On the existence of periodic solutions of semilinear elliptic equations”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 167–178  mathnet  crossref  mathscinet  zmath  isi
79. Ya. Sh. Ilyasov, “Existence of periodic nonnegative solutions of the equations $-\Delta u=g(u)$ in $\mathbb{R}^{N+1}$”, Dokl. Math., 48:2 (1994), 278–281  mathnet  mathscinet  zmath  isi

   1990
80. Y. Sh. Il'yasov, “Non-equilibrium phase transitions in the multicomponent chemical systems”, Unsteady State Processes in Catalysis: Proceedings of the International Conference, Novosibirsk, eds. Yu S. Matros, VSP BV, Zeist, Netherlands, 1990, 123-126

   1988
81. Ilyasov, Yavdat Shavkatovich., Ob asimptoticheskikh razlozheniyakh reshenii kvazilineinykh stokhasticheskikh parabolicheskikh uravnenii, Diss. kand. fiz.-matem. nauk, AN SSSR. Ural. otd-nie. Bashk. nauch. tsentr. In-t matematiki s VTs, Ufa, 1988 , 149 pp. http://search.rsl.ru/ru/record/01008474354  zmath

   1987
82. Ya. Sh. Il'yasov, A. I. Komech, “Girsanov's theorem and ergodic properties of statistical solutions of nonlinear parabolic equations”, Trudy Sem. Petrovsk., 1987, no. 12, 88–117, 243–244  crossref  mathscinet  zmath  scopus

   1986
83. Ya. Sh. Il'yasov, “Asymptotic expansion of solutions of nonlinear stochastic parabolic equations”, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 7:2 (1986), 36–40  mathscinet
84. Ya. Sh. Il'yasov, “Asymptotic expansion of the solutions of nonlinear parabolic equations with a small parameter in the presence of white noise”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1986, no. 3, 101–104, 121  mathnet  mathscinet  mathscinet  zmath  isi

Presentations in Math-Net.Ru
1. Pohozaev's identity and compact supported solutions
Ya. Sh. Il'yasov
The Seventh International Conference on Differential and Functional Differential Equations
August 24, 2014 16:40   

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020