RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Seregin Grigorii Aleksandrovich

Statistics Math-Net.Ru
Total publications: 59
Scientific articles: 53
Presentations: 3

Number of views:
This page:2587
Abstract pages:11413
Full texts:4459
References:859
Professor
Doctor of physico-mathematical sciences
E-mail: ,

http://www.mathnet.ru/eng/person8812
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/293381
http://elibrary.ru/author_items.asp?authorid=3651

Publications in Math-Net.Ru
1. Remarks on Liouville type theorems for steady-state Navier–Stokes equations
G. Seregin
Algebra i Analiz, 30:2 (2018),  238–248
2. Liouville-type theorems for the Navier–Stokes equations
G. A. Seregin, T. N. Shilkin
Uspekhi Mat. Nauk, 73:4(442) (2018),  103–170
3. $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
J. Burczak, G. Seregin
Zap. Nauchn. Sem. POMI, 459 (2017),  37–57
4. Remark on Wolf's condition for boundary regularity of Navier–Stokes equations
G. Seregin
Zap. Nauchn. Sem. POMI, 444 (2016),  124–132
5. Liouville theorem for 2D Navier–Stokes equations in half space
G. Seregin
Zap. Nauchn. Sem. POMI, 425 (2014),  137–148
6. Rescalings at possible singularities of Navier–Stokes equations in half-space
G. Seregin, V. Šverák
Algebra i Analiz, 25:5 (2013),  146–172
7. A Liouville theorem for the Stokes system in half-space
H. Jia, G. Seregin, V. Sverak
Zap. Nauchn. Sem. POMI, 410 (2013),  25–35
8. Note on bounded scale-invariant quantities for the Navier–Stokes equations
G. Seregin
Zap. Nauchn. Sem. POMI, 397 (2011),  150–156
9. On a bounded shear flow in half-space
G. Seregin, V. Sverak
Zap. Nauchn. Sem. POMI, 385 (2010),  200–205
10. Necessary conditions of potential blow up for Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 385 (2010),  187–199
11. A note on local boundary regularity for the Stokes system
G. A. Seregin
Zap. Nauchn. Sem. POMI, 370 (2009),  151–159
12. On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 362 (2008),  325–336
13. Local regularity for suitable weak solutions of the Navier–Stokes equations
G. A. Seregin
Uspekhi Mat. Nauk, 62:3(375) (2007),  149–168
14. Existence of global solutions for a parabolic system related to the nonlinear Stokes problem
M. Fuchs, G. A. Seregin
Zap. Nauchn. Sem. POMI, 348 (2007),  254–271
15. New version of the Ladyzhenskaya–Prodi–Serrin condition
G. A. Seregin
Algebra i Analiz, 18:1 (2006),  124–143
16. Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces
G. A. Seregin
Zap. Nauchn. Sem. POMI, 336 (2006),  199–210
17. A sufficient condition of local regularity for the Navier–Stokes equations
W. Zajączkowski, G. A. Seregin
Zap. Nauchn. Sem. POMI, 336 (2006),  46–54
18. Boundary partial regularity for the Navier–Stokes equations
G. A. Seregin, T. N. Shilkin, V. A. Solonnikov
Zap. Nauchn. Sem. POMI, 310 (2004),  158–190
19. Backward uniqueness for the heat operator in half-space
L. Escauriaza, G. Seregin, V. Šverak
Algebra i Analiz, 15:1 (2003),  201–214
20. $L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness
L. Escauriaza, G. A. Seregin, V. Šverak
Uspekhi Mat. Nauk, 58:2(350) (2003),  3–44
21. On smoothness of suitable weak solutions to the Navier–Stokes equations
G. A. Seregin, V. Šverak
Zap. Nauchn. Sem. POMI, 306 (2003),  186–198
22. Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary
G. A. Seregin
Zap. Nauchn. Sem. POMI, 295 (2003),  168–179
23. Differentiability properties of weak solutions of the Navier–Stokes equations
G. A. Seregin
Algebra i Analiz, 14:1 (2002),  194–237
24. On Backward uniqueness for parabolic equations
L. Escauriaza, G. A. Seregin, V. Šverak
Zap. Nauchn. Sem. POMI, 288 (2002),  100–103
25. Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 271 (2000),  204–223
26. $J_p^1$-quasiconvexity and variational problems on sets of solenoidal vector fields
G. A. Seregin
Algebra i Analiz, 11:2 (1999),  170–217
27. Partial regularity for solutions to the modified Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 259 (1999),  238–253
28. On reqularity of solutions to two-dimensional equations of the dynamics of fluids with nonlinear viscosity
O. A. Ladyzhenskaya, G. A. Seregin
Zap. Nauchn. Sem. POMI, 259 (1999),  145–166
29. A variational problem on the phase equilibrium of an elastic body
G. A. Seregin
Algebra i Analiz, 10:3 (1998),  92–132
30. Smoothness of solutions of equations describing generalized Newtonian flows and estimates for the dimensions of their attractors
O. A. Ladyzhenskaya, G. A. Seregin
Izv. RAN. Ser. Mat., 62:1 (1998),  59–122
31. Flow of two-dimensional generalized Newtonian fluid
G. A. Seregin
Algebra i Analiz, 9:1 (1997),  167–200
32. On attractors for equations describing the flow of generalized Newtonian fluids
G. A. Seregin
Zap. Nauchn. Sem. POMI, 249 (1997),  256–293
33. Regularity for minimaizers of some variational problems in plasticity theory
G. A. Seregin, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 243 (1997),  270–298
34. Two-dimensional variational problems of the theory of plasticity
G. A. Seregin
Izv. RAN. Ser. Mat., 60:1 (1996),  175–210
35. Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory
G. A. Seregin
Zap. Nauchn. Sem. POMI, 233 (1996),  227–232
36. On the regularity of solutions of variational problems in the theory of phase transitions in an elastic body
G. A. Seregin
Algebra i Analiz, 7:6 (1995),  153–187
37. Some remarks on the mollification of piecewise-linear homeomorphisms
G. A. Seregin, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 221 (1995),  235–242
38. Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
M. Fuchs, G. A. Seregin
Algebra i Analiz, 6:6 (1994),  128–153
39. Some remarks on variational problems for functionals with $L\ln L$ growth
G. A. Seregin
Zap. Nauchn. Sem. POMI, 213 (1994),  164–178
40. Differential properties of the stress tensor in the Coulomb-Mohr theory of plasticity
G. A. Seregin
Algebra i Analiz, 4:6 (1992),  234–252
41. On the regularity of minimizers of some variational problems in the theory of plasticity
G. A. Seregin
Algebra i Analiz, 4:5 (1992),  181–218
42. A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
G. A. Seregin
Zap. Nauchn. Sem. POMI, 200 (1992),  167–176
43. On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations
O. A. Ladyzhenskaya, G. A. Seregin
Zap. Nauchn. Sem. LOMI, 197 (1992),  87–119
44. On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
G. A. Seregin
Zap. Nauchn. Sem. LOMI, 188 (1991),  128–142
45. On the regularity of weak solutions of variational problems of plasticity theory
G. A. Seregin
Algebra i Analiz, 2:2 (1990),  121–140
46. Differential properties of extremals of variational problems that arise in the theory of plasticity
G. A. Seregin
Differ. Uravn., 26:6 (1990),  1033–1044
47. Differential properties of extremals of variational problems in the mechanics of viscoplastic media
G. A. Seregin
Trudy Mat. Inst. Steklov., 188 (1990),  117–124
48. On the differentiability of extremals of variational problems of the mechanics of ideally elastoplastic media
G. A. Seregin
Differ. Uravn., 23:11 (1987),  1981–1991
49. On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media
G. A. Serëgin
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  23–30
50. A variational-difference scheme for problems of limit equilibrium
G. A. Seregin
Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987),  83–92
51. On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory
G. A. Seregin
Mat. Sb. (N.S.), 130(172):3(7) (1986),  291–309
52. Variational-difference schemes for problems of the mechanics of ideally elastoplastic media
G. A. Seregin
Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  237–253
53. Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity
G. A. Seregin
Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984),  420–445

54. To Solonnikov's jubilee
I. V. Denisova, K. I. Pileckas, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova
Zap. Nauchn. Sem. POMI, 362 (2008),  5–14
55. Olga Aleksandrovna Ladyzhenskaya (obituary)
V. I. Arnol'd, M. Sh. Birman, A. M. Vershik, M. I. Vishik, I. M. Gel'fand, I. A. Ibragimov, V. P. Maslov, S. P. Novikov, G. A. Seregin, Ya. G. Sinai, M. Z. Solomyak, V. A. Solonnikov, N. N. Ural'tseva, L. D. Faddeev
Uspekhi Mat. Nauk, 59:3(357) (2004),  151–152
56. To the 70th anniversary of Nina Nikolaevna Ural'tseva
A. A. Arkhipova, G. A. Seregin
Zap. Nauchn. Sem. POMI, 310 (2004),  7–18
57. Ol'ga Aleksandrovna Ladyzhenskaya (on her 80th birthday)
G. A. Seregin, N. N. Ural'tseva
Uspekhi Mat. Nauk, 58:2(350) (2003),  181–206
58. To Vsevolod Alekseevich Solonnikov on the occasion of his jubilee
I. V. Denisova, O. A. Ladyzhenskaya, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova
Zap. Nauchn. Sem. POMI, 306 (2003),  7–15
59. To the jubillee of O. A. Ladyzhenskaya
A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 288 (2002),  5–13

Presentations in Math-Net.Ru
1. О гладкости решений уравнений Навье-Стокса
G. A. Seregin
International conference "Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics" dedicated to the 150th anniversary of V. A. Steklov
May 17, 2013 11:45   
2. Global wellposedness and local regularity for Navier–Stokes Equations
G. Seregin
Mathematics - XXI century. PDMI 70th anniversary
September 17, 2010 13:30   
3. Mathematical problems of dynamics of generalized Newtonial fluids
G. A. Seregin
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
April 21, 1997

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018