RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Popov Vladimir Leonidovich

Total publications: 154 (125)
in MathSciNet: 93 (78)
in zbMATH: 72 (60)
in Web of Science: 37 (34)
in Scopus: 34 (34)
Cited articles: 70
Citations in Math-Net.Ru: 325
Citations in MathSciNet (by Sep 2017): 1119
Citations in Web of Science: 275
Citations in Scopus: 146
Presentations: 85

Number of views:
This page:14353
Abstract pages:11499
Full texts:3442
References:694
Popov Vladimir Leonidovich
Corresponding member of RAS
Professor
Doctor of physico-mathematical sciences (1984)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
Birth date: 3.09.1946
Phone: +7 (495) 941 01 79
Fax: +7 (495) 984 81 39
E-mail: ,
Website: http://researchgate.net/profile/Vladimir_Popov12
Keywords: Algebraic group, Lie group, Lie algebra, algebraic variety, action, representation, algebra, invariant, covariant, orbit, homogeneous space, automorphism group of algebraic variety, Cremona group, discrete reflection group, lattice.
UDC: 512.7, 512.745, 512.745.4, 512.743, 512.747, 512.76, 512.77, 512.71, 512.812, 512.813, 512, 519.4
MSC: 14l30, 14l24, 14l35, 15a72, 14l40, 14l10, 14l15, 14l17, 14m17, 14m20, 20G05, 15A72

Subject:

Algebraic transformation groups; invariant theory; algebraic groups, Lie groups, Lie algebras and their representations; algebraic geometry; automorphism groups of algebraic varieties; discrete reflection groups

Biography

Graduated from Mathematics and Mechanics Faculty of Moscow State University Lomonosov (MSU) (Department of High Algebra) in 1969. PhD (Candidate of Physics and Mathematics) (1972). Habilitation (Doctor of Physics and Mathematics) (1984). Full Professor (1986). Chair of Algebra and Mathematical Logic at Moscow State University MIEM (1995–2012; half-time since 2002). Since 2012 Professor at Department of Applied Mathematics of MIEM-HSE (part time). Since January 2002 Leading Research Fellow, and since May 2017 Principal Research Fellow at the Steklov Mathematical Institute, Russian Academy of Sciences (main place of work).

Executive Managing Editor of the journal "Transformation Groups" published by Birkhäuser Boston (1996–present). Member of the Editorial Boards of the journals: "Izvestiya: Mathematics" (2006–present) and "Mathematical Notes" (2003–present) published by Russian Academy of Sciences, "Journal of Mathematical Sciences" published by Springer (2001–present), "Geometriae Dedicata" published by Kluwer (1989–1999). Founder and Title Editor of the series "Invariant Theory and Algebraic Transformation Groups" of Encyclopaedia of Mathematical Sciences published by Springer (1998–present).

Invited speaker at the International Congress of Mathematicians, Berkeley, USA (1986). The results of 1982–1983 are the subject of J. Dixmier's talk at Séminaire N. Bourbaki (J. Dixmier, Quelques résults de finitude en théorie des invariants (d'après V. L. Popov), Séminaire Bourbaki, 38ème année 1985–86, no. 659, pp. 163–175).

Core member of the panel for Section 2, "Algebra" of the Program Committee for the 2010 International Congress of Mathematicians (2008–2010).

Fellow of the American Mathematical Society (elected in November 2012), see http://www.ams.org/profession/fellows-list-institution

Corresponding Member of the Russian Academy of Sciences (elected in October 2016).

Invited plenary speaker at the XVth Austrian–German Mathematical Congress (Ősterreichische Mathematische Gesellschaft–XV Kongress, Jahrestagung der Deutschen Mathematiker-vereinigung), Vienna, 2001.

Honorable International John-von-Neumann Professur awarded by Technische Universität München, Germany (2008). Invited Noted Scholar, Heidelberg University, Germany (1998–1999). Invited Noted Scholar, the University of British Columbia, Vancouver, Canada (1996).

Invited speaker at the international colloquia and conferences in Russia, France, UK, Italy, Germany, USA, Canada, Japan, Switzerland, Israel, Netherlands, Belgium, Spain, Norway, Sweden, India, Australia, Singapore, Hungary, Poland, Argentina, Uruguay, in particular, at Colloque en l'honneur de J. Dixmier (Paris, 1989), at the International Conference commemorating 150th birthday of Sophus Lie (Oslo, 1992), at Special Sessions of the Annual American Mathematical Society meetings in Chicago (1995) and Louisville, USA (1998), at the International Colloquium "Algebra, Arithmetic and Geometry" (Tata Institute, Bombay, 2000), at the International Conference commemorating 80th birthday of B. Kostant" (Vancouver, 2008).

Honorable Colligwood Lecture at Durham University, UK (2007).

Delivered courses "Invariant Theory", "Discrete Groups Generated by Complex Reflections", "Algebraic Transformation Groups and Singularities of Algebraic Varieties", "Algebraic Groups", "Algebraic Geometry" at the invitation of several leading mathematical centers in Germany (Heidelberg University, TUM), Switzerland (ETH Zürich), Netherlands (University of Utrecht), USA (University of Michigan), Canada (UBC), Austria (The Erwin Schrödinger Institute, Innsbruck University), Australia (Sydney University), Sweden (Lund University).

Executive Managing Editor of the journal Transformation Groups (1996--present), Birkhäuser Boston. Member of the Editorial Boards of Izvestiya Mathematics (2006--present), Mathematical Notes (2003--present), Journal of Mathematical Sciences (2001--present), Springer, European Mathematical Society Newsletter (since January 2015), EMS, Geometriae Dedicata (1989--1999), Kl\"uwer. Founder and title Editor of the subseries "Invariant Theory and Algebraic Transformation Groups" of Encyclopaedia of Mathematical Sciences, Springer (1998--present).

Member, Board of Moscow Mathematical Society (1998–2000).

More than 150 publications, among them 4 monographs, 1 textbook and the papers published in Annals of Mathematics, Journal of the American Mathematical Society, Compositio Mathematica, Transformation Groups, Izvestiya: Mathematics, Sbornik: Mathematics, Journal fur die reine und angewandte Mathematik, Commentarii Mathematici Helvetici, Contemporary Mathematics, Journal of Algebra, Functional Analysis and Its Applications, Comptes Rendus de l'Academie des Sciences Paris, Transactions of the Moscow Mathematical Society, Indagationes Mathematicae, Mathematical Notes, Russian Mathematical Surveys, Journal of the Ramanujan Mathematical Society, Documenta Mathematica, Pacific Journal of Mathematics, European Journal of Mathematics. The results are included in many monographs and textbooks (D. Mumford, J. Fogarty, Geometric Invariant Theory; H. Kraft, Geometrische Methoden in der Invariantentheorie; H. Derksen, G. Kemper, Computational Invariant Theory; F. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory; H. Kraft, P. Slodowy, T. A. Springer, Algebraic Transformation Groups and Invariant Theory; W. F. Santos, A. Rittatore, Actions and Invariants of Algebraic Groups; B. Sturmfels, Algorithms in Invariant Theory; G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations; M. Lorenz, Multiplicative Invariant Theory; E. A. Tevelev, Projective Duality and Homogeneous Spaces and the others).

Organizer of several international conferences, in particular, "Semester on Algebraic Transformation Groups" at The Erwin Schrödinger Institute, Vienna (joint with B. Kostant, 2000), and the conference "Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory" at The Erwin Schrödinger Institute, Vienna (2001).

Principal Investigator of the fSU–USA cooperative CRDF project "Algebraic Transformation Groups and Applications" (1996–1998). Team Leader of the joint Swiss-Franco-fSU INTAS project "Algebraic Transformation Groups with Application in Representation Theory and Algebraic Geometry" (1998–2000).

First Prize, graduate students research competition, Department of Mathematics, Moscow State University Lomonosov (1969).

======================================

Among the results obtained are:

● A criterion for closedness of orbits in general position, one of the basic facts of modern Invariant theory (1970–72).

● Pioneering results of modern theory of embeddings (compactifications) of homogeneous algebraic varieties (in particular, toric and spherical varieties), which determined its rapid modern development (1972–73).

● Computing the Picard group of any homogeneous algebraic variety of any linear algebraic group (1972–74).

● Creation of a new direction in Invariant theory—classifying linear actions with certain exceptional properties, e.g., with a free algebra of invariants (jointly with V. G. Kac and E. B. Vinberg), with a free module of covariants, with an equidimensional quotient, and the others. Developing the appropriate methods and obtaining the classifications themselves. Finiteness theorems for the actions with a fixed length of the chain of syzygies (1976–83). The ideology of exceptional properties has then became wide spreaded.

● Solution to the generalized Hilbert’s 14th problem (1979).

● The estimates of the degrees of basic invariants of connected semisimple linear groups first obtained 100 years after the attempt by Hilbert to obtain them (1981–82). They gave rise to modern constructive Invariant theory .

● A theory of contractions of any actions to horospherical ones, which has become an indispensable tool for the modern theory of algebraic transformation groups (1986).

● Pioneering results on the description of algebraic subgroups of the affine Cremona groups that led to a surge of activity in this area in recent decades are obtained (1986–2011).

● The characterization of affine algebraic groups as automorphism groups of simple finite-dimensional (not necessarily associative) algebras (2003, jointly with N. L. Gordeev). In particular, the extension to any finite group of the famous characterization of the largest simple sporadic finite group (the Fischer–Griess Monster). The result is published in Annals of Mathematics and recognized as one of the best in the Steklov Mathematical Institute in 2002.

● A theory of the phenomenon discovered in 1846 by Cayley (2005, jointly with N. Lemire, Z. Reichstein): classification of algebraic groups admitting a birational equivariant map on its Lie algebra. Solution to the old (1975) problem of classifying Caley unimodular groups. The result is published in Journal of the American Mathematical Society and recognized as one of the best in the Russian Academy of Sciences in 2005.

● Classification of simple Lie algebras whose fields of rational functions are purely transcendental over the subfields of adjoint invariants (2010, jointly with J.-L. Colliot-Thélène, B. Kunyavskiĭ, Z. Reichstein). This result is at the heart of counter-examples to the famous Gel'fand–Kirillov conjecture of 1966 on the fields of fractions of the universal enveloping algebras of simple Lie algebras. It is published in Compositio Mathematica and recognized as one of the best in the Steklov Mathematical Institute in 2010.

● Answers to the old (1969) questions of Grothendieck to Serre on the cross-sections and quotients for the actions of semisimple algebraic groups on themselves by conjugation. Constructing the minimal system of generators of the algebras of class functions and that of the representations of rings of such groups (2011).

● The solution of the classification problem, posed in 1965 by A. Borel, of infinite discrete groups generated by complex affine unitary reflections; exploring their remarkable connections with number theory, combinatorics, coding theory, algebraic geometry and singularity theory (1980–82, 2005).

===================================

On the results obtained (citations):

● From Introduction to the book J. Olver, Classical Invariant Theory, London Math. Soc. Student Texts 44 Cambridge Univ. Press, 1999:

``[…] a vigorous, new Russian school of invariant theorists, led by Popov [181] and Vinberg [226] who have pushed the theory into fertile new areas. […]"

● On the book Popov, V. L. Groups, Generators, Syzygies, and Orbits in Invariant Theory. Transl. of Math. Monographs, 100. Amer. Math. Soc., Providence, RI, 1992. vi+245 pp.:

– From the review by G. Schwarz (Bull of Amer. Math. Soc., 29 (1993), no. 2, 299–304):

``[…] Popov is a leader in Invariant theory, and the articles in this book were important to that field’s development. […]’’

``[…] There has been an explosion of activity in this area over the last ten years. Popov's work was seminal. […]’’

– From the review by M. Brion (Math. Reviews 92g:14054:

``[… ] The author’s results have been the starting point for research trends in invariant theory: for example, classification of representations of semisimple groups with ``good " properties, and also embedding theory of homogeneous spaces. […]’’

● On the work V. L. Popov, E. B. Vinberg, Invariant Theory, Encycl. Math. Sci., Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284:

– From the review by N. Andruskiewitsch (Zentralblatt Math. 735.14010):

``[…] The paper under review, written by two of the main contributors in this last period, […] should be considered as a book, which is probably the format it would have if translated. […]"

– From the review by P. E. Newstead (Math. Reviews 92d:14010) :

``This article is […] by two of today’s leading experts in the field and will undoubtedly serve as a major source of information on the subject. […]"

● From the paper Y. André, Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence, Ann. Sci. Ec. Norm. Sup. (4) 47 (2014), no. 2, 449--467:

``After pioneering work by Grosshans, Luna, Popov, Vinberg and others in the seventies, the study of quasi-homogeneous G-varieties, i.e., algebraic G-varieties with a dense G-orbit, has now become a rich and deep theory.’’

● From the paper D. Luna et Th. Vust, Plongements d’espaces homogènes, Comment. Math. Helvetici 58 (1983), 186–245:

``Nous devons notre point de départ bien évidemment à la théorie des plongements toriques ([5], [6]), mais aussi à article [10] de V. L. Popov, dans lequel est donnée la classification des espaces Presque-homogènes affines normaux sous SL(2)’’ (here [10] stands for V. L. Popov, “Quasihomogeneous affine algebraic varieties of the group SL(2)”, Math. USSR-Izv., 7:4 (1973), 793–831).

● From the Introduction to Chap. III of the book H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, Bd. D1, Vieweg, Braunschweig, 1985:

``[…] Zum Abschluss geben wir – sozusagen als Krönung der hier entwickelten Methoden – die vollständige Klassifikation der sogenannten SL(2)-Einbettungen, d.h. derjenigen affinen SL(2)-Varietäten, welche einen dichten Orbit enthalten. Dieses schöne Resultat geht auf V. L. Popov zurück [P1]'' (here [Po1] stands for V. L. Popov, “Quasihomogeneous affine algebraic varieties of the group SL(2)”, Math. USSR-Izv., 7:4 (1973), 793–831).

● From the book Algebraic Transformation Groups and Invariant Theory, DMV Seminar, Band 13, Birkhäuser, 1989, p. 72:

``In this paragraph we explain some classical results about the Picard group Pic G ([…]; [Po 74]; […])" (here [Po 74] stands for V. L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR Izv. 8 (1974), 301–327).

● From the paper H. Derksen, H. Kraft, Constructive Invariant theory, in: Algèbre Non Commutative, Groupes Quantiques et Invariants (Reims, 1995), Sémin. Congr., Vol. 36, Soc. Math. France, Paris, 1997, pp. 221–244:

``It took almost a century until Vladimir Popov determined a general bound for β(V ) for any semi-simple group G ([Pop 81/82])" (here [Pop 81/82] stands for V. Popov, Constructive Invariant theory, Ast_erisque 87{88 (1981), 303–334, and V. L. Popov, The constructive theory of invariants, Math. USSR Izv. 19 (1982), 359–376.

● From the paper J. Elmer, M. Kohls, Zero-separating invariants for finite groups, J. Algebra 411 (2014), 92–113:

``One of the most celebrated results of 20th century invariant theory is the theorem of Nagata [12] and Popov [13] which states that k[X]^G is finitely generated for all affine G-varieties X if and only if G is reductive.'' (here [13] stands for V. L. Popov, Hilbert's theorem on invariants, Soviet Math. Dokl., 20:6 (1979), 1318–1322).

● From the book (p. 161) D. Mumford, J. Fogarty, Geometric Invariant Theory, 2nd ed., Ergebnisse der Math. Und ihrer Grenzgebiete, Bd. 34, Springer-Verlag, Berlin, 1982:

``[…] The striking result due to Kac, Popov, Vinberg ([…], [166], […]) is the following Theorem […]‘’ (here [166] stands for V. G. Kac, V. L. Popov, E. B. Vinberg, “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:12 (1976), A875–A878).

● From the paper H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a C-action, Osaka J. Math. 42 (2005), no. 4, 931–974:

``By classical results […] of Popov [Po], […]" (here [Po] stands for V. L. Popov, Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group, Math. USSR Izv. 7 (1974), 1039–1055 (1975)).

● From the paper L. E. Renner, Orbits and invariants of visible group actions, Transform. Groups 17 (2012), no. 4, 1191–1208:

``We now introduce the following definition (Definition 1.10 below). It is one of the key notions in the study of invariants.[...] The notion of a stable action was first introduced in [7] by V. L. Popov. There he establishes a criterion of stability for semisimple groups (Theorem 1 of [7])‘’ (here Definition 1.10 is the definition of stable action and [7] is the reference to paper V. Popov, On the stability of the action of an algebraic group on an algebraic variety, Math. USSR Izv. 6 (1973), 367–379).

● From the paper N. Perrin, On the geometry of spherical varieties, Transform. Groups 19 (2014), no. 1, 171–223:

``It is a classical problem to ask which product of projective rational homogeneous spaces $\prod_i G/P_i$ has a dense G-orbit. This is solved in [141] if all the parabolic subgroups agree‘’ (here [141] is the reference to the paper V. L. Popov, Generically multiple transitive algebraic group actions, in: Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (Mumbai, 2004), Tata Institute of Fundamental Research, Vol. 19, Narosa, internat. distrib. by AMS, New Delhi, 2007, pp. 481–523).

   
Main publications:
  1. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet  zmath  isi  elib  scopus
  2. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet  zmath  isi  elib  scopus
  3. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet  zmath
  4. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406  mathscinet
  5. V. L. Popov, Discrete Somplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 pp.  mathscinet  zmath

http://www.mathnet.ru/eng/person8935
http://scholar.google.com/citations?user=Qcve-A0AAAAJ&hl=en
http://zbmath.org/authors/?q=ai:popov.vladimir-l
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=191510
http://elibrary.ru/author_items.asp?authorid=103605
http://orcid.org/0000-0003-0990-2898
http://www.researcherid.com/rid/C-3495-2014
http://www.scopus.com/authid/detail.url?authorId=13605069500
https://www.researchgate.net/profile/Vladimir_Popov12
http://arxiv.org/a/popov_v_1

Full list of publications:
| by years | by types | by times cited | scientific publications | common list |



   2018
1. Vladimir L. Popov, “Modality of representations, and packets for $\theta$-groups”, Lie Groups, Geometry, and Representation Theory: In Honor of Bertram Kostant, 1st ed., Progress in Mathematics, eds. Victor G. Kac, Vladimir L. Popov, Birkhäuser, Boston, 2018 (to appear) arxiv.org/abs/1707.07720
2. Lie Groups, Geometry, and Representation Theory: In Honor of Bertram Kostant, Progress in Mathematics, 1st ed., eds. Victor G. Kac, Vladimir L. Popov, Birkhäuser, Boston, 2018 (to appear)

   2017
3. Vladimir L. Popov, “Do we create mathematics or do we gradually discover theories which exist somewhere independently of us?”, Eur. Math. Soc. Newsl., 107 (2017), 37 http://www.ems-ph.org/journals/newsletter/pdf/2017-03-103.pdf  mathnet
4. V. L. Popov, “Borel subgroups of Cremona groups”, Mathematical Notes, 102:1 (2017), 60-67 link.springer.com/article/10.1134/S0001434617070070  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
5. V. L. Popov, “On modality of representations”, Doklady Mathematics, 96:1 (2017), 312–314  mathnet  crossref  crossref  isi  elib  scopus
6. Vladimir L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, 2017 , 12 pp., arXiv: 1707.06914v1
7. Vladimir L. Popov, Modality of representations, 2017 , 20 pp., arXiv: 1707.07720v1
8. Vladimir L. Popov, “Bass' triangulability problem”, Adv. Stud. Pure Math., 75, Algebraic Varieties and Automorphism Groups, 2017, 425–441 , Math. Soc. Japan, Kinokuniya, Tokyo, arXiv: 1504.03867  mathnet
9. Vladimir L. Popov, “Discrete groups generated by complex reflections”, VI-th conference on algebraic geometry and complex analysis for young mathematicians of Russia (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 25–30, 2017), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2017, 13–14 www.mathnet.ru/php/conference.phtml?confid=1006&option_lang=eng
10. Gene Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Subseries: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, 136, no. VII, 2nd ed., eds. Revaz V. Gamkrelidze, Vladimir L. Popov, Springer, Berlin, 2017 , 316+i-xxii pp. https://link.springer.com/content/pdf/bfm  crossref

   2016
11. Vladimir L. Popov, “Birational splitting and algebraic group actions”, Eur. J. Math., 2:1 (2016), 283–290 , Published online: 16 May 2015 https://www.math.uni-bielefeld.de/LAG/man/552.pdf, arXiv: 1502.02167  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
12. V. L. Popov, G. V. Sukhotskii, Analiticheskaya geometriya. Uchebnik i praktikum, Bakalavr. Akademicheskii kurs, 2-e izd., per. i dop., Yurait, Moskva, 2016 , 232 pp. http://urait.ru/catalog/388730
13. V. L. Popov, “Algebras of General Type: Rational Parametrization and Normal Forms”, Proc. Steklov Inst. Math., 292:1 (2016), 202–215  mathnet  crossref  crossref  mathscinet  isi (cited: 1)  elib  elib  scopus
14. V. L. Popov, “Subgroups of the Cremona groups: Bass' problem”, Dokl. Math., 93:3 (2016), 307–309  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
15. V. L. Popov, “Rationality of (co)adjoint orbits”, International conference on algebraic geometry, complex analysis and computer algebra (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 03–09, 2016), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2016, 84–85 http://www.mathnet.ru/ConfLogos/805/thesis.pdf

   2015
16. Vladimir L. Popov, “Around the Abhyankar–Sathaye conjecture”, Documenta Mathematica, 2015, Extra Volume:Alexander S. Merkurjev's Sixtieth Birthday (The Book Series, Vol. 7), 513–528 https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html, arXiv: 1409.6330 (ISSN 1431-0643 (INTERNET), 1431-0635 (PRINT))  mathnet  mathscinet
17. V. L. Popov, “Finite subgroups of diffeomorphism groups”, Proc. Steklov Inst. Math., 289 (2015), 221–226 , arXiv: 1310.6548v2  mathnet  crossref  crossref  isi (cited: 4)  elib  elib  scopus (cited: 2)
18. V. L. Popov, “Problema Bassa o trianguliruemosti podgrupp grupp Kremony”, V shkola-konferentsiya po algebraicheskoi geometrii i kompleksnomu analizu dlya molodykh matematikov Rossii (g. Koryazhma Arkhangelskoi oblasti, Filial Severnogo (Arkticheskogo) federalnogo universiteta im. M. V. Lomonosova, 17–22 avgusta 2015 g.), Matematicheskii institut im. V.A. Steklova Rossiiskoi akademii nauk, Moskva, 2015, 83–87 http://www.mathnet.ru/ConfLogos/604/thesis-Koryazhma.pdf
19. V. L. Popov, “Number of components of the nullcone”, Proc. Steklov Inst. of Math., 290 (2015), 84–90 , arXiv: 1503.08303  mathnet  crossref  crossref  isi (cited: 2)  elib  elib  scopus (cited: 1)
20. Vladimir L. Popov, “On the equations defining affine algebraic groups”, Pacific J. Math., 279:1-2, Special issue. In memoriam: Robert Steinberg (2015), 423–446 http://msp.org/pjm/2015/279-1/p19.xhtml, arXiv: 1508.02860  mathnet  crossref  mathscinet  isi  scopus
21. H. Derksen, G. Kemper, Computational Invariant Theory, with two Appendices by Vladimir L. Popov, and an Addendum by Norbert A'Campo and Vladimir L. Popov, Encyclopaedia of Mathematical Sciences, subseries “Invariant Theory and Algebraic Transformation Groups”, 130, no. VIII, Second Enlarged Edition, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, Heidelberg, 2015 , 387 pp. DOI:10.1007/978-3-662-48422-7  crossref
22. Vladimir L. Popov, “Is one of the two orbits in the closure of the other?”, Appendix B in: H. Derksen, G. Kemper, Computational Invariant Theory, Subseries “Invariant Theory and Algebraic Transformation Groups”, no. VIII, Encyclopaedia of Mathematical Sciences, 130, 2nd Enlarged Ed., Springer, Berlin, 2015, 309–322 www.springer.com/gp/book/9783662484203  crossref
23. Vladimir L. Popov, “Stratification of the nullcone”, Appendix C in: H. Derksen, G. Kemper, Computational Invariant Theory, Subseries “Invariant Theory and Algebraic Transformation Groups”, no. VIII, Encyclopaedia of Mathematical Sciences, 130, 2nd Enlarged Ed. with two Appendices by V. L. Popov, and an Addendum by N. A. Campo and V. L. Popov, Springer, Berlin, 2015, 323–344 www.springer.com/gp/book/9783662484203  crossref
24. Norbert A'Campo, Vladimir L. Popov, “The source code of HNC”, Addendum to Appendix C in: H. Derksen, G. Kemper, Computational Invariant Theory, Subseries “Invariant Theory and Algebraic Transformation Groups”, no. VIII, Encyclopaedia of Mathematical Sciences, 130, 2nd Enlarged Ed. with two Appendices by V. L. Popov, and an Addendum by N. A. Campo and V. L. Popov, Springer, Berlin, 2015, 345–358 www.springer.com/gp/book/9783662484203  crossref

   2014
25. V. L. Popov, “Quotients by conjugation action, cross-sections, singularities,and representation rings”, Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras (Mathematisches Forschungsinstitut Oberwolfach, 19 January – 25 January 2014), Oberwolfach Reports, 11, no. 1, European Mathematical Society, 2014, 156–159
26. V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2, special issue dedicated to E. B. Dynkin's 90th anniversary (2014), 549–568 https://www.math.uni-bielefeld.de/LAG/man/523.pdf, arXiv: 1401.0278  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 3)  elib (cited: 1)  scopus (cited: 2)
27. V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proceedings in Mathematics & Statistics, 79, Springer, 2014, 185–213 https://www.math.uni-bielefeld.de/LAG/man/508.pdf, arXiv: 1307.5522  mathnet  crossref  mathscinet  zmath  scopus (cited: 7)
28. V. L. Popov, “Jordaness of the automorphism groups of varieties and manifolds”, Modern Problems of Mathematics and Natural Sciences (Koryazhma, September 15–18, 2014), Northern (Arctic) Federal M. V. Lomonosov University, Koryazhma, 2014, 66–70
29. N. A. Vavilov, È. B. Vinberg, I. A. Panin, A. N. Panov, A. N. Parshin, V. P. Platonov, V. L. Popov, “Valentin Evgen'evich Voskresenskii (obituary)”, Russian Math. Surveys, 69:4 (2014), 753–754  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib

   2013
30. V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4, special issue on the occasion of I. R. Shafarevich's 90th anniversary (2013), 742–771 https://www.math.uni-bielefeld.de/LAG/man/474.pdf  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
31. V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry, Proceedings of the conference on the occasion of M. Miyanishi's 70th birthday (Osaka, Japan, 3–6 March 2011), World Scientific Publishing Co., Singapore, 2013, 213–242 https://www.math.uni-bielefeld.de/LAG/man/448.pdf  crossref  isi (cited: 6)
32. V. L. Popov, “Algebraic groups and the Cremona group”, Algebraic groups (Mathematisches Forschungsinstitut Oberwolfach, 7 April – 13 April 2013), Oberwolfach Reports, 10, no. 2, European Mathematical Society, 2013, 1053–1055
33. V. L. Popov, “Rationality and the FML invariant”, Journal of the Ramanujan Mathematical Society, 28A (2013), 409–415 http://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-017.html, https://www.math.uni-bielefeld.de/LAG/man/485.pdf (special Issue-2013 dedicated to C. S. Seshadri's 80th birthday)  mathnet  mathscinet (cited: 1)  zmath  isi (cited: 2)
34. S. V. Vostokov, S. O. Gorchinskiy, A. B. Zheglov, Yu. G. Zarkhin, Yu. V. Nesterenko, D. O. Orlov, D. V. Osipov, V. L. Popov, A. G. Sergeev, I. R. Shafarevich, “Aleksei Nikolaevich Parshin (on his 70th birthday)”, Russian Math. Surveys, 68:1 (2013), 189–197  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib

   2012
35. V. L. Popov, “Problems for the problem session”, International conference “Groups of Automorphisms in Birational and Affine Geometry” (Levico Terme (Trento), October 29th – November 3rd, 2012), 2012 , 2 pp. http://www.science.unitn.it/cirm/Trento_postersession.html
36. V. L. Popov, Editor's preface to the Russian translation of the book: D. A. Cox, S. Katz, Mirror symmetry and algebraic geometry, ed. V. L. Popov, MCCME, Moscow, 2012, 5

   2011
37. J.-L. Colliot-Thélène, B. Kunyavskiĭ, V. L. Popov, Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math., 147:2 (2011), 428–466  crossref  mathscinet (cited: 12)  zmath  isi (cited: 8)  scopus (cited: 6)
38. V. L. Popov, “Cross-sections, quotients, and representation rings of semisimple algebraic groups”, Transform. Groups, 16:3, special issue dedicated to Tonny Springer on the occasion of his 85th birthday (2011), 827–856  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 4)  scopus (cited: 4)
39. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell Festschrift, CRM Proceedings and Lecture Notes, 54, Amer. Math. Soc., 2011, 289–311 https://www.math.uni-bielefeld.de/LAG/man/375.pdf  mathscinet (cited: 13)  zmath  isi (cited: 15)
40. V. L. Popov, “Invariant rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture”, Algebra and Mathematical Logic, International conference commemorating $100$th birthday of professor V. V. Morozov (Kazan, September 25–30, 2011), Kazan Federal Univ., Kazan, 2011, 19
41. D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, VIII, 138, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2011 , 253 pp.  crossref  mathscinet (cited: 52)  zmath
42. H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, IX, 139, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2011 , 233 pp.  crossref  mathscinet (cited: 23)

   2010
43. V. Popov, “Discrete complex reflection groups”, Geometry, topology, algebra and number theory, applications, The international conference dedicated to the 120th anniversary of Boris Nikolaevich Delone (1890–1980) (August 16–20, 2010), Steklov Mathematical Institute, Moscow State University, Moscow, 2010, 140

   2009
44. V. L. Popov, “Two orbits: When is one in the closure of the other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158  mathnet  crossref  mathscinet  isi (cited: 4)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 4)
45. V. L. Popov, “Algebraic Cones”, Math. Notes, 86:6 (2009), 892–894  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus

   2008
46. V. L. Popov, “Irregular and singular loci of commuting varieties”, Transformation Groups, 13:3-4, special issue dedicated to Bertram Kostant on the occasion of his 80th birthday (2008), 819–837  crossref  mathscinet (cited: 9)  zmath  isi (cited: 9)  elib (cited: 8)  scopus (cited: 9)
47. V. Lakshmibai, K. N. Raghavan, Standard Monomial Theory. Invariant Theoretic Approach, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, VIII, 137, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2008 , 265 pp.  crossref  mathscinet (cited: 15)  zmath

   2007
48. V. L. Popov, “Generically multiple transitive algebraic group actions”, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (Mumbai, 2004), Tata Institute of Fundamental Research, 19, Narosa Publishing House, Internat. distrib. by American Mathematical Society, New Delhi, 2007, 481–523  mathscinet (cited: 12)  zmath
49. V. L. Popov, “Tensor product decompositions and open orbits in multiple flag varieties”, J. Algebra, 313:1 (2007), 392–416  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 4)
50. N. Lemire, V. L. Popov, Z. Reichstein, “On the Cayley degree of an algebraic group”, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 87–97  mathscinet  zmath
51. V. L. Popov, “Quasihomogeneous affine threefolds”, Affine algebraic geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 13–16 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
52. V. L. Popov, “Birationally nonequivalent linear actions. Cayley degrees of simple algebraic groups. Singularities of two-dimensional quotients”, Affine Algebraic Geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 75–78 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
53. V. L. Popov, “Finite linear groups, lattices, and products of elliptic curves”, International Algebraic Conference Dedicated to the 100th Anniversary of D. K. Faddeev (St. Petersburg, September 24–29, 2007), St. Petersburg State University, St. Petersburg Department of the V. A. Steklov Institute of Mathematics RAS, 2007, 148–149

   2006
54. V. L. Popov, Yu. G. Zarhin, “Finite linear groups, lattices, and products of elliptic curves”, J. Algebra, 305:1 (2006), 562–576  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
55. M. Losik, P. W. Michor, V. L. Popov, “On polarizations in invariant theory”, J. Algebra, 301:1 (2006), 406–424  crossref  mathscinet (cited: 7)  zmath  isi (cited: 8)  elib (cited: 7)  scopus (cited: 8)
56. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet (cited: 9)  zmath  isi (cited: 9)  elib (cited: 8)  scopus (cited: 9)
57. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Series Invariant Theory and Algebraic Transformation Groups, VII, 136, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2006 , 261 pp.  mathscinet (cited: 89)  zmath

   2005
58. V. L. Popov, “Projective duality and principal nilpotent elements of symmetric pairs”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 215–222  mathscinet (cited: 2)  zmath
59. V. L. Popov, “Roots of the affine Cremona group; Rationality of homogeneous spaces; Two locally nilpotent derivations”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 12–16
60. E. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, IV, 133, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2005 , 250 pp.  mathscinet (cited: 23)  zmath
61. M. Lorenz, Multiplicative invariant theory, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, VI, 135, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2005 , 177 pp.  mathscinet (cited: 33)  zmath
62. L. E. Renner, Linear algebraic monoids, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, V, 134, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2005 , 246 pp.  mathscinet (cited: 67)  zmath

   2004
63. V. L. Popov, E. A. Tevelev, “Self-dual projective algebraic varieties associated with symmetric spaces”, Algebraic transformation groups and algebraic varieties, Proceedings of the International conference “Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory” (the Erwin Schrödinger Institute, Vienna, October 22–26, 2001), Invariant Theory and Algebraic Transformation Groups, III, Encyclopaedia of Mathematical Sciences, 132, eds. V. L. Popov, Springer, Heidelberg, Berlin, 2004, 131–167  mathscinet (cited: 7)  zmath  isi (cited: 6)
64. V. L. Popov, “Moment polytopes of nilpotent orbit closures; Dimension and isomorphism of simple modules; and Variations on the theme of J. Chipalkatti”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 193–198  mathscinet (cited: 2)  zmath
65. N. A'Campo, V. L. Popov, The computer algebra package HNC (Hilbert Null Cone), http://www.geometrie.ch/, Mathematisches Institut Universität Basel, Basel, 2004 , 12 pp.
66. V. L. Popov (ed.), Algebraic transformation groups and algebraic varieties, Proceedings of the International conference “Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory” held at the Erwin Schrödinger Institute (Vienna, October 22–26, 2001), Invariant Theory and Algebraic Transformation Groups, v. III, Encyclopaedia of Mathematical Sciences, 132, Springer, Berlin, Heidelberg, 2004 , xii+238 pp.  mathscinet (cited: 3)

   2003
67. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet (cited: 6)  zmath  isi (cited: 6)  elib (cited: 5)  scopus (cited: 5)
68. M. Losik, P. W. Michor, V. L. Popov, “Invariant tensor fields and orbit varieties for finite algebraic transformation groups”, A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory (Chennai, 2002), Hindustan Book Agency (India), Chennai, 2003, 346–378  mathscinet (cited: 4)  zmath
69. V. L. Popov, “The Cone of Hilbert nullforms”, Proc. Steklov Inst. Math., 241 (2003), 177–194  mathnet  mathscinet  zmath
70. V. L. Popov, “Greetings to Seshadri on his 70th birthday”, A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory, Hindustan Book Agency (India), Chennai, 2003, xix

   2002
71. V. L. Popov, “Self-dual algebraic varieties and nilpotent orbits”, Proceedings of the international conference “Algebra, Arithmetic and Geometry”, Part II (Mumbai, 2000), Tata Institute of Fundamental Research, 16, Narosa Publishing House, intern. distrib. by American Mathematical Society, New Delhi, 2002, 509–533  mathscinet (cited: 6)  zmath
72. V. L. Popov, “Constructive invariant theory”, Collection of Papers Commemorating 40th Anniversary of MGIEM, MIEM Publ., Moscow, 2002, 103–106
73. H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopaedia of Mathematical Sciences, Series Invariant Theory and Algebraic Transformation Groups, 1, 130, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2002 , 268 pp.  mathscinet (cited: 167)  zmath
74. A. Białynicki-Birula, J. B. Carrell, W. M. McGovern, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, II, 131, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2002 , 242 pp.  mathscinet (cited: 8)  zmath

   2001
75. V. L. Popov, “On polynomial automorphisms of affine spaces”, Izv. Math., 65:3 (2001), 569–587  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
76. V. Popov, “Modern developments in invariant theory”, Plenary Address at Österreichische Mathematische Gesellschaft – 15 Kongress, Jahrestagung der Deutschen Mathematikervereinigung (Vienna, 16–22 September), Deutsche Mathematikervereinigung, Österreichische Mathematische Gesellschaft, 2001, 48
77. V. L. Popov, “Preface to the Russian translation of talks at the Séminaire Bourbaki, 1992”, Mathematics. News in Foreign Science, 50, Mir, Moscow, 2001

   2000
78. P. I. Katsylo, V. L. Popov, “On Fixed Points of Algebraic Actions on $\mathbb{C}^n$”, Funct. Anal. Appl., 34:1 (2000), 33–40  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
79. V. L. Popov, Generators and relations of the affine coordinate rings of connected semisimple algebraic groups, preprint ESI, no. 972, The Erwin Schrödinger Institute for Mathematical Physics, Vienna, 2000 , 12 pp.
80. V. L. Popov, Editor's preface to the Russian translation of the book: D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra (2nd edition, Springer, 1998), ed. V. L. Popov, Mir, Moscow, 2000, 6

   1999
81. V. L. Popov, G. V. Sukhotsky, Analytic Geometry. Lectures and Exercises, MGIEM, SITMO Publ., Moscow, 1999 , ii+232 pp.
82. Vladimir Popov, “Algebraic groups of automorphisms of polynomial rings”, Colloque International “Théorie des Groupes”. Journées Solstice d'été 1999 (Institut de Mathématiques de Jussieu, 75005 Paris, France, 17, 18, 19 juin 1999), l'Université Paris 7–Denis Diderot, 1999, 15 https://www.imj-prg.fr/grg/archives/Colloques/1999Solstice/

   1998
83. V. L. Popov, Discrete complex reflection groups, Workshop on Reflection Groups, January 13–21, SISSA, Trieste, Italy, 1998 , 23 pp.
84. V. L. Popov, “Comments to the papers by D. Hilbert “Über die Theorie der algebraischen Formen” and “Über die vollen Invariantensysteme””: D. Hilbert, Selected Works, Factorial Publ., Moscow, 1998, 490–517
85. V. L. Popov, “Reductive subgroups of $Aut(A^3)$ and $Aut(A^4)$”, Tagungsbericht 14/1998, Algebraische Gruppen, 05.04–11.04.1998 (Mathematisches Forschungsinstitut Oberwolfach, 05.04–11.04,1998), v. 14, Mathematisches Forschungsinstitut Oberwolfach, 1998, 13–14 https://www.mfo.de/occasion/9815/www_view

   1997
86. V. Popov, G. Röhrle, “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, 9, Cambridge University Press, Cambridge, 1997, 297–320  mathscinet (cited: 16)  zmath
87. V. L. Popov, “A finiteness theorem for parabolic subgroups of fixed modality”, Indag. Math. (N.S.), 8:1 (1997), 125–132  crossref  mathscinet (cited: 7)  zmath  isi (cited: 10)  elib (cited: 9)  scopus (cited: 10)
88. V. L. Popov, “On the Closedness of Some Orbits of Algebraic Groups”, Funct. Anal. Appl., 31:4 (1997), 286–289  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
89. Vladimir Popov, “Orbits of parabolic subgroups acting on its unipotent radicals”, Tagungsbericht 42/1997. Einh"ullende Algebren und Darstellungstheorie. 02.11–08.11.1997 (Mathematisches Forschungsinstitut Oberwolfach. 02.11–08.11.1997), v. 42, Mathematisches Forschungsinstitut Oberwolfach, 1997, 13 http://oda.mfo.de/bsz325095604.html
90. D. V. Alekseevskii, V. O. Bugaenko, G. I. Olshanskii, V. L. Popov, O. V. Schwarzman, “Érnest Borisovich Vinberg (on his 60th birthday)”, Russian Math. Surveys, 52:6 (1997), 1335–1343  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)

   1995
91. V. L. Popov, “An analogue of M. Artin's conjecture on invariants for nonassociative algebras”, Lie Groups and Lie Algebras: E. B. Dynkin's Seminar, American Mathematical Society Translations Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 121–143  mathscinet (cited: 4)  zmath  isi (cited: 23)

   1994
92. V. Popov, “Sections in invariant theory”, Proceedings of The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, 315–361  mathscinet (cited: 28)
93. V. L. Popov, “Divisor class groups of the semigroups of the highest weights”, J. Algebra, 168:3 (1994), 773–779  crossref  mathscinet  zmath  isi  elib  scopus
94. V. L. Popov, E. B. Vinberg, “Invariant theory”, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, Springer-Verlag, Berlin, Heidelberg, New York, 1994, 123–284

   1993
95. V. L. Popov, “Singularities of closures of orbits”, Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conference Proceedings, 7, Bar-Ilan University, Ramat Gan, 1993, 133–141  mathscinet (cited: 1)  zmath
96. V. L. Popov, Predislovie k russkomu perevodu knigi: V. Kats, Beskonechnomernye algebry Li, eds. V. L. Popov, Mir, M., 1993, 5–6 , 425 pp.  mathscinet (cited: 29)

   1992
97. V. L. Popov, “On the “lemma of Seshadri””, Arithmetic and Geometry of Varieties, Samara State Univ., Samara, 1992, 133–139  mathscinet  zmath
98. V. L. Popov, È. B. Vinberg, “Some open problems in invariant theory”, Proc. Internat. Conf. in Algebra, Part 3 (Novosibirsk, 1989), Contemporary Mathematics, 131, Part 3, American Mathematical Society, Providence, RI, 1992, 485–497  crossref  mathscinet (cited: 3)  isi (cited: 51)
99. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet (cited: 14)  zmath
100. V. L. Popov, “On the “lemma of Seshadri””, Lie Groups, Their Discrete Subgroups, and Invariant Theory, Advances in Soviet Mathematics, 8, Amer. Math. Soc., Providence, RI, 1992, 167–172  mathscinet (cited: 3)

   1991
101. V. L. Popov, “Invariant theory”, Algebra and Analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. Ser. 2, 148, Amer. Math. Soc., Providence, RI, 1991, 99–112  mathscinet (cited: 5)

   1990
102. V. L. Popov, “When are the stabilizers of all nonzero semisimple points finite?”, Operator algebras, unitary representations, nveloping algebras, and invariant theory (Paris, 1989), Progress in Mathematics, 92, Birkhäuser Boston, Boston, MA, 1990, 541–559  mathscinet (cited: 1)  isi (cited: 47)

   1989
103. V. L. Popov, “Some applications of algebra of functions on $G/U$”, Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conference Proceedings, 10, Amer. Math. Soc., Providence, RI, 1989, 157–166  mathscinet
104. V. L. Popov, “Automorphism groups of polynomial algebras”, Problems in Algebra (Gomel'), v. 4, Universitetskoe, Minsk, 1989, 4–16  mathscinet
105. E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya–4, Itogi nauki i tekhn., Ser. Sovrem. probl. mat., Fundam. napravleniya, 55, VINITI, M., 1989, 137–309  mathnet (cited: 73)  mathscinet (cited: 129)  zmath [V.. L. Popov, È. B. Vinberg, “Invariant theory”, Algebraic Geometry–4, Encyclopaedia of Mathematical Sciences, 55, Springer-Verlag, Berlin, Heidelberg, 1994, 123–284]
106. V. L. Popov, “Modules with finite stabilizers of nonzero semisimple elements”, Proc. Intern. Conference commemorating A. I. Mal'cev (Novosibirsk), Math. Inst. Sib. Branch Acad. Sci., Novosibirsk, 1989, 108
107. V. L. Popov, Basic algebraic structures, MIEM Publ., Moscow, 1989 , 42 pp.

   1988
108. V. L. Popov, “On the actions of ${\mathbf G}_a$ on ${\mathbf A}^n$”, Arithmetic and geometry of varieties, Kuibyshev. Gos. Univ., Kuybyshev, 1988, 93–98  mathscinet
109. V. L. Popov, “Zamknutye orbity borelevskikh podgrupp”, Matem. sb., 135(177):3 (1988), 385–402  mathnet (cited: 3)  mathscinet (cited: 4)  zmath; V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR-Sb., 63:2 (1989), 375–392  crossref  mathscinet  zmath
110. V. L. Popov, Analytic Geometry, MIEM Publ., Moscow, 1988 , 44 pp.
111. V. L. Popov, Linear Algebra, MIEM Publ., Moscow, 1988 , 45 pp.

   1987
112. V. L. Popov, “One and a half centuries in the theory of invariants”, Methodological analysis of mathematical theories, Akad. Nauk SSSR Prezid., Tsentral. Sovet Filos. (Metod.) Sem., Moscow, 1987, 235–256  mathscinet
113. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406  mathscinet (cited: 1)
114. V. L. Popov, “On actions of ${\mathbf G}_a$ on ${\mathbf A}^n$”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer, Berlin, 1987, 237–242  crossref  mathscinet (cited: 9)  isi (cited: 11)
115. V. L. Popov, “Stability of actions of Borel subgroups”, Proc. of the XIX-th All Union Algebraic Conference (L'vov), v. 1, Steklov Math. Inst. Acad. Sci. USSR, Moscow, 1987, 48
116. V. L. Popov, Editor's preface to the Russian translation of the book: H. Kraft, Geometrische Methoden in der Invariantentheorie, eds. V. L. Popov, Mir, Moscow, 1987, 5–7  mathscinet  zmath

   1986
117. V. L. Popov, “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130(172):3(7) (1986), 310–334  mathnet (cited: 29)  mathscinet (cited: 30)  zmath; V. L. Popov, “Contractions of the actions of reductive algebraic groups”, Math. USSR-Sb., 58:2 (1987), 311–335  crossref  mathscinet  zmath
118. V. L. Popov, “On one-dimensional unipotent subgroups of the automorphism group of a polynomial algebra”, Proc. of the X-th All Union Symposium on Groups Theory (Minsk), Math. Isnt. Belorus. Acad. Sci., 1986, 182

   1985
119. H. Kraft, V. L. Popov, “Semisimple group actions on the three-dimensional affine space are linear”, Comment. Math. Helv., 60:3 (1985), 466–479  crossref  mathscinet (cited: 19)  zmath  isi (cited: 25)  elib (cited: 7)  scopus (cited: 24)

   1984
120. V. L. Popov, “Comments to the papers by H. Weyl “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare TYransformationen”, “Spinors in $n$ dimensions” and “Eine für die Valenztheorie geeignete Basis der binären vektorinvarianten””, H. Weyl, Selected Works, Nauka, Moscow, 1984, 471–478; 461–467  mathscinet

   1983
121. V. L. Popov, “Homological dimension of algebras of invariants”, J. Reine Angew. Math., 341 (1983), 157–173  crossref  mathscinet (cited: 3)  zmath  isi (cited: 10)  scopus (cited: 8)
122. V. L. Popov, “Sizigii v teorii invariantov”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 544–622  mathnet (cited: 5)  mathscinet (cited: 2)  zmath; V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  crossref  mathscinet  zmath
123. V. L. Popov, “On homological dimension of algebras of invariants”, Proc. of the XVII-th All Union Algebraic Conference (Minsk), Math. Inst. Belorus. Acad. Sci, 1983, 152–153

   1982
124. V. L. Popov, Discrete Somplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 pp.  mathscinet (cited: 14)  zmath
125. V. L. Popov, “Teorema konechnosti dlya predstavlenii so svobodnoi algebroi invariantov”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 347–370  mathnet (cited: 4)  mathscinet  zmath; V. L. Popov, “A finiteness theorem for representations with a free algebra of invariants”, Math. USSR-Izv., 20:2 (1983), 333–354  crossref  mathscinet  zmath
126. V. Grigor'ev, V. L. Popov, D. D. Solncev, Problems in algebra, MIEM Publ., Moscow, 1982 , 98 pp.

   1981
127. V. L. Popov, “Constructive invariant theory”, Young Tableaux and Schur Functors in Algebra and Geometry (Toruń, 1980), Astérisque, 87, Soc. Math. France, Paris, 1981, 303–334  mathscinet (cited: 11)
128. V. L. Popov, “Konstruktivnaya teoriya invariantov”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1100–1120  mathnet (cited: 5)  mathscinet (cited: 3)  zmath; V. L. Popov, “The constructive theory of invariants”, Math. USSR-Izv., 19:2 (1982), 359–376  crossref  mathscinet  zmath
129. V. L. Popov, “Appendix 3 to the Russian translation of the book”: T. A. Springer, Invariant theory”, Mathematics. News in Foreign Science, 24, eds. V. L. Popov, Mir, Moscow, 1981, 153–182
130. V. L. Popov, Preface to the Russian translation of: T. Springer, Invariant theory, Mir, Moscow, 1981, 5–8

   1980
131. V. L. Popov, “Complex root systems and their Weyl groups”, Proc. of the VII All Union Symposium on Group Theory (Krasnoyarsk), Math. Inst. Sib. Branch Acad. Sci., Krasnoyarsk Univ., Krasnoyarsk, 1980, 91
132. V. L. Popov, “Constructive invariant theory”, Proc. internat. conf. “Young Tableaux and Schur Functions in Algebra and Geometry” (Toruń, Poland), Inst. Math. Acad. Polon. Sci., 1980, 10–11

   1979
133. V. L. Popov, “Hilbert's theorem on invariants”, Soviet Math. Dokl., 20:6 (1979), 1318–1322  mathscinet  zmath
134. V. L. Popov, “On Hilbert's fourteenth problem”, Proc. of the XV-th All Union Algebraic Conference (Krasnoyarsk), Math. Inst. Sib. Branch Acad. Sci., Krasnoyarsk Univ., Krasnoyarsk, 1979, 123

   1978
135. V. L. Popov, “Klassifikatsiya spinorov razmernosti chetyrnadtsat”, Trudy Mosk. matem. obschestva, 37, MMO, 1978, 173–217  mathnet (cited: 1)  mathscinet (cited: 2)  zmath; V. L. Popov, “Classification of spinors of dimension fourteen”, Trans. Mosc. Math. Soc., 1 (1980), 181–232  zmath
136. V. L. Popov, “Algebraic curves with an infinite automorphism group”, Math. Notes, 23:2 (1978), 102–108  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  scopus (cited: 1)

   1977
137. V. L. Popov, “One conjecture of Steinberg”, Funct. Anal. Appl., 11:1 (1977), 70–71  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
138. V. L. Popov, “Classification of the spinors of dimension fourteen”, Uspekhi Mat. Nauk, 32:1(193) (1977), 199–200  mathnet  mathscinet  zmath
139. V. L. Popov, “Crystallographic groups generated by affine unitary reflection”, Proc. of the XIV-th All Union Algebraic Conference (Novosibirsk), v. 1, Math. Inst. Sib. Branch Acad. Sci., Novosibirsk Univ., Novosibirsk, 1977, 55–56
140. V. L. Popov, 86 statei, v. 1–5, Matematicheskaya entsiklopediya, Sov. entsikl., M., 1977–1985  hlocal; V. L. Popov, 86 papers, Encyclopaedia of Mathematics, Kluwer Academic Publishers, 1987–2002

   1976
141. V. G. Kac, V. L. Popov, E. B. Vinberg, “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:12 (1976), A875–A878  mathscinet (cited: 12)
142. V. L. Popov, “Representations with a free module of covariants”, Funct. Anal. Appl., 10:3 (1976), 242–244  mathnet  crossref  mathscinet  zmath  scopus (cited: 24)

   1975
143. V. L. Popov, “The classification of representations which are exceptional in the sense of Igusa”, Funct. Anal. Appl., 9:4 (1975), 348–350  mathnet  crossref  mathscinet  zmath  scopus (cited: 3)
144. V. L. Popov, “Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group”, Math. USSR-Izv., 9:3 (1975), 535–576  mathnet  crossref  mathscinet  zmath

   1974
145. V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327  mathnet  crossref  mathscinet  zmath
146. V. L. Popov, “Structure of the closure of orbits in spaces of finite-dimensional linear SL(2) representations”, Math. Notes, 16:6 (1974), 1159–1162  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   1973
147. V. L. Popov, “Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 7:5 (1973), 1039–1056  mathnet  crossref  mathscinet  zmath
148. V. L. Popov, “Quasihomogeneous affine algebraic varieties of the group SL(2)”, Math. USSR-Izv., 7:4 (1973), 793–831  mathnet  crossref  mathscinet  zmath

   1972
149. È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758  mathnet  crossref  mathscinet  zmath
150. V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379  mathnet  crossref  mathscinet  zmath
151. V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Uspekhi Mat. Nauk, XXVII:4 (1972), 191–192  mathnet

   1971
152. E. M. Andreev, V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group”, Funct. Anal. Appl., 5:4 (1971), 265–271  mathnet  crossref  mathscinet  zmath  scopus (cited: 8)
153. V. L. Popov, “Regular action of a semisimple algebraic group on an affine factorial algebra”, Proc. of the XI-th All Union Algebraic Colloquium (Kishinev), Math. Istitute Mold. Acad. Sci., Kishinev, 1971, 75

   1970
154. V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535  mathnet  crossref  mathscinet  zmath

Presentations in Math-Net.Ru
1. Discrete groups generated by complex reflections. Lecture 3
V. L. Popov
Sixth school-conference on algebraic geometry and complex analysis for young russian mathematicians
August 26, 2017 09:00
2. Discrete groups generated by complex reflections. Lecture 2
V. L. Popov
Sixth school-conference on algebraic geometry and complex analysis for young russian mathematicians
August 25, 2017 15:35
3. Discrete groups generated by complex reflections. Lecture 1
V. L. Popov
Sixth school-conference on algebraic geometry and complex analysis for young russian mathematicians
August 25, 2017 14:30
4. What are the equations defining linear algebraic groups?
V. L. Popov
"Algebra, algebraic geometry, and number theory". Memorial conference for academician Igor Rostislavovich Shafarevich
June 5, 2017 14:30   
5. On Borel subgroups in the Cremona groups
V. L. Popov
Seminar of the Department of Algebra and of the Department of Algebraic Geometry (Shafarevich Seminar)
October 11, 2016 15:00
6. Around the Bass' Triangulability Problem
V. L. Popov
International Cremona Conference, September 5--16, 2016, Basel, Switzerland
September 14, 2016 10:30
7. Triangulable subgroups of the Cremona groups
V. L. Popov
International conference on algebraic geometry, complex analysis and computer algebra
August 7, 2016 12:00
8. Coordinate algebras of connected affine algebraic groups: generators and relations
V. L. Popov
International Workshop "Hopf Algebras, Algebraic Groups and Related Structures", June 13-17, 2016, Memorial University of Newfoundland, St John's, NL, Canada
June 14, 2016 15:00
9. On the equations defining affine algebraic groups
V. L. Popov
The third Russian-Chinese conference on complex analysis, algebra, algebraic geometry and mathematical physics
May 14, 2016 12:10   
10. The equations defining algebraic groups
V. L. Popov
Talk delivered at the Chebyshev Laboratory, St. Petersburg State University
December 24, 2015 11:00
11. Simple algebras and algebraic groups
V. L. Popov
September 16, 2015 13:30
12. Bass' problem on triangulable subgroups of the Cremona group
V. L. Popov
May 22, 2015 10:00
13. Invariant Theory
V. L. Popov
May 21, 2015 18:00   
14. Algebraic subgroups of the Cremona groups
V. L. Popov
International Scientific Session "Algebraic Geometry, Warsaw 1960-2015", on the occasion of awarding the honorary doctorate of the University of Warsaw to Professor Andrzej Szczepan Bialynicki-Birula, March 19-20, 2015, Warshaw, Poland
March 20, 2015 15:00
15. About Grothendieck
V. L. Popov
Meeting "Alexander Grothendieck (1928--2014) and mathematics of XXth century" of the Section of Mathematics, Central House of Scientists of the RAS
February 19, 2015 18:30
16. Jordan groups
V. L. Popov
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
December 18, 2014 14:00   
17. Closures of orbits
V. L. Popov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
December 17, 2014 17:00
18. Simple algebras and invariants of linear actions
V. L. Popov
Seminar of the Department of Algebra and of the Department of Algebraic Geometry (Shafarevich Seminar)
November 18, 2014 15:00
19. Orbit closures of algebraic group actions
V. L. Popov
International conference "Geometry, Topology and Integrability", October 20-25, 2014, Skolkovo Institute of Science and Technology, Moscow
October 23, 2014 12:50
20. Orbit closures
V. L. Popov
September 16, 2014 09:00   
21. Infinite dimensional automorphism groups of algebraic varieties, multiple transitivity, and unirationality
V. L. Popov
July 17, 2014 14:00
22. Finite group actions on algebraic varieties: a “social” approach
V. L. Popov
July 10, 2014 10:00
23. Automorphism groups of algebraic varieties
V. L. Popov
Steklov Mathematical Institute Seminar
March 27, 2014 16:00   
24. Quotients by conjugation action, cross-sections, singularities, and representation rings
V. L. Popov
January 20, 2014 15:00
25. Строение алгебраических подгрупп групп автоморфизмов алгебраических многообразий и, в частности, группы Кремоны $\mathrm{Cr}_n$
V. L. Popov
Scientific session of the Steklov Mathematical Institute dedicated to the results of 2013
November 20, 2013 10:20   
26. Жордановы группы и группы автоморфизмов алгебраических многообразий
V. L. Popov
Seminar of the Department of Algebra and of the Department of Algebraic Geometry (Shafarevich Seminar)
September 10, 2013 15:00
27. Grothendieck's questions on conjugating actions of semisimple groups
V. L. Popov
International conference dedicated to the 90th anniversary of academician Igor Rostislavovich Shafarevich
June 5, 2013 14:30   
28. Algebraic groups and the Cremona group
V. L. Popov
April 9, 2013 10:20
29. Orbit closures
V. L. Popov
March 6, 2013 11:30
30. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture
V. L. Popov
January 4, 2013 15:10
31. Tori in Cremona groups
V. L. Popov
Second one-day conference dedicated to the memory of V. A. Iskovskikh
December 27, 2012 12:30   
32. Simple algebras and the analogue of classical invariant theory for nonclassical groups
V. L. Popov
International conference "Arithmetic as Geometry: Parshin Fest"
November 29, 2012 15:00   
33. Jordan groups and automorphism groups of algebraic varieties
V. L. Popov
November 2, 2012
34. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov Conjecture
V. L. Popov
October 2, 2012   
35. 170 years of invariant theory
V. L. Popov
September 27, 2012
36. Coordinate algebras of algebraic groups: generators and relations
V. L. Popov
September 27, 2012
37. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov Conjecture
V. L. Popov
September 25, 2012
38. Tori in Cremona groups
V. L. Popov
International conference "Essential Dimension and Cremona Groups", Chern Institute of Mathematics, Nankai University, Tianjin, China
June 12, 2012
39. 170 years of invariant theory
V. L. Popov
Colloquium talk at the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
June 8, 2012 16:30
40. Rational actions on affine spaces
V. L. Popov
International conference "Birational and affine geometry"
April 23, 2012 11:00   
41. On the subgroups of the Cremona group
V. Popov
Seminar of the Department of Algebra and of the Department of Algebraic Geometry (Shafarevich Seminar)
April 3, 2012 15:00
42. Invariant rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture
V. L. Popov
International conference "Algebra and Mathematical Logic" dedicated to the 100-th birthday of Professor V. V. Morozov
September 27, 2011 11:20
43. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
Colloque International, Journées Solstice d'été 2011, Institut de Mathématiques de Jussieu, Université Paris-7 Denis Diderot, Paris
June 23, 2011 09:00
44. Discrete groups generated by complex reflections
V. L. Popov
International conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone (1890–1980)
August 17, 2010 14:00
45. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
International Algebraic Conference dedicated to the 70th birthday of Anatoly Yakovlev, June 19–24, 2010, St. Petersburg, Russia
June 19, 2010 09:30
46. Cayley groups
V. L. Popov
International Workshop Non-Archimedean Analysis, Lie Groups and Dynamical Systems February 8-12, 2010, Paderborn, Germany
February 8, 2010 14:50
47. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
International Workshop Linear Algebraic Groups and Related Structures, Banff International Research Station for Mathematical Innovation and Discovery, Banff, Canada
September 16, 2009 09:50
48. Cross-sections and quotients for the actions of semisimple algebraic groups
V. L. Popov
International conference "Geometry of Algebraic Varieties" dedicated to the memory of Vasily Alexeevich Iskovskikh
June 30, 2009 10:00   
49. Two orbits: when is one in the closure of the other?
V. L. Popov
International conference Affine Algebraic Geometry in honour of Peter Russell, McGill University, Montreal, Canada
June 5, 2009 15:00
50. Algebraic groups and singularities
V. L. Popov
Summer School-Conference on Algebraic Geometry and Complex Analysis, Yaroslavl
May 11, 2009
51. Two orbits: when is one in the closure of the other?
V. L. Popov
Seminar of the Department of Algebra
April 28, 2009 15:00
52. Is the field of functions on the Lie algebra pure over the invariant subfield?
V. L. Popov
The second annual conference-meeting MIAN–POMI "Algebra and Algebraic Geometry"
December 24, 2008 12:15   
53. Describing the Hilbert cone of unstable points
V. L. Popov
International Conference Geometric Invariant Theory, Mathematisches Institut Georg-August-Universitat Gottingen, Gottingen, Germany
June 2, 2008 09:30
54. Tensor product decompositions and open orbits in multiple flag varieties
V. L. Popov
International Conference Lie Theory and Geometry. The Mathematical Legacy of Bertram Kostant, University of British Columbia, Vancouver, Canada
May 23, 2008 14:30
55. One and a half centuries of invariant theory
V. L. Popov
Steklov Mathematical Institute Seminar
February 28, 2008 16:00   
56. Rationality of extensions of invariant fields
V. L. Popov
Seminar of the Department of Algebra
January 29, 2008 15:00
57. One and a half centuries of Invariant Theory
V. L. Popov
The 2007 Collingwood Lecture, Durham University, Great Britain
November 23, 2007 13:15
58. Finite linear groups, lattices, and products of elliptic curves
V. L. Popov
International Algebraic Conference dedicated to the 100th anniversary of D. K. Faddeev
September 25, 2007 11:00
59. Cayley groups
V. L. Popov
International conference on algebra and number theory, dedicated to the 80th anniversary of V. E. Voskresensky, Samara
May 22, 2007
60. Discrete groups generated by complex reflections
V. L. Popov
Seminar of the Department of Algebra
March 27, 2007 15:00
61. Generically transitive algebraic group actions, open orbits in multiple flag varieties, and tensor product decompositions
V. L. Popov
Seminar of the Department of Algebra
January 23, 2007 15:00
62. Quasihomogeneous affine threefolds
V. L. Popov
International Conference Affine Algebraic Geometry, Oberwolfach, Germany
January 7, 2007
63. Generically multiple transitive algebraic group actions
V. L. Popov
International conference Algebraic Geometry: Warsaw 1960-2005, Bedlęwo, Poland
June 8, 2006
64. Finite linear groups, lattices, and products of elliptic curves
V. L. Popov
International Workshop Algebra and Geometry on the occasion of Norbert A'Campo's 65th anniversary, ETH Zurich, Switzerland
May 18, 2006
65. 13th Hilbert problem and algebraic groups
V. L. Popov
Meetings of the St. Petersburg Mathematical Society
April 18, 2006
66. Finite linear groups, lattices, and products of elliptic curves (joint work with Yu. G. Zarhin)
V. L. Popov
Seminar of the Department of Algebra
April 4, 2006
67. Projective self-dual algebraic varieties and nilpotent orbits
V. L. Popov
Buenos Aires Satellite Conference of the Lat Am Algebra Colloquium, BASCOLA, University of Buenos Aires
August 10, 2005 11:00
68. Finite dimensional simple algebras and the analogue of classicalinvariant theory for nonclassical groups
V. L. Popov
XVI Latin American Algebra Colloquium, Coloniadel Sacramento, Uruguay
August 7, 2005
69. Projective duality and nilpotent orbits
V. L. Popov
Seminar of the Department of Algebra
April 12, 2005
70. Generators and relations of algebras of regular functions of connected linear groups
V. L. Popov
Seminar of the Department of Algebra
January 18, 2005
71. Polynomial automorphisms
V. L. Popov
The University of British Columbia, Mathematics Department
November 24, 2004 15:00
72. 150 years of Invariant Theory
V. L. Popov
Red Raider Symposium 2004: Invariant Theory in Perspective Texas Technical University, Lubbock TX, USA
November 11, 2004 10:00
73. Cayley groups
V. L. Popov
International Conference Arithmetic Geometry, St. Petersburg
June 26, 2004
74. Проективно самодвойственные алгебраические многообразия и нильпотентные орбиты
V. L. Popov
Lie groups and invariant theory
May 5, 2004 16:20
75. Cayley groups
V. L. Popov
International Conference Commutative Algebra and Algebraic Geometry in honor of Professor Miyanishi, Osaka University, Japan
May 1, 2004
76. Cayley maps for algebraic groups
V. L. Popov
International Colloquium Algebraic Groups and Homogeneous Spaces, Bombay, India
January 6, 2004
77. Finite dimensional simple algebras and the analogue of classical invariant theory for nonclassical groups
V. L. Popov
International workshop on Invariant Theory, Queen's University, Kingston, ON, Canada
April 8, 2002
78. Homogeneous spaces and the problems of groups actions and algebraic geometry
V. L. Popov
International Workshop Group Actions on Rational Varieties CRM, Montreal, Canada
February 27, 2002 09:00
79. Hilbert 13th problem and algebraic groups
V. L. Popov
Moscow mathematical society
April 4, 2000
80. Algebraic group actions and rational singularities
V. L. Popov
International Workshop "Trends in Commutative Algebra", Indian Institute of Technology, Bombay, January 13–15, 2000
January 14, 2000 09:00
81. Modern developments in invariant theory
V. L. Popov
International Workshop "Trends in Commutative Algebra", Indian Institute of Technology, Bombay, January 13–15, 2000
January 13, 2000 10:00
82. Algebraic groups of automorphisms of polynomial rings
V. L. Popov
Théorie des Groupes', Colloque International, Journées Solstice d'été 1999
June 8, 1999 15:15
83. Reductive subgroups of ${\mathrm Aut}{\mathbf A}^3$ and ${\mathrm Aut}{\mathbf A}^4$
V. L. Popov
Algebraische Gruppen, Mathematisches Forschungsinstitut Oberwolfach, Germany, 05-11 April,1998
April 7, 1998 11:00
84. Orbits of parabolic subgroup acting on its unipotent radical
V. L. Popov
Einhüllende Algebren und Darstellungstheorie, Mathematisches Forschungsinstitut Oberwolfach, Germany, 02.11–08.11.1997
November 4, 1997 10:00
85. Kostant sections
V. L. Popov
Colloque International "Groupes et Algèbres" Journées Solstice d'été, Institut de Mathématiques de Jussieu, Université Paris-7 Denis Diderot, Paris
June 23, 1995

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017