RUS  ENG            
 

: 160 (131)
MathSciNet: 93 (78)
zbMATH: 72 (60)
Web of Science: 39 (36)
Scopus: 35 (35)
 : 73
Math-Net.Ru: 340
Web of Science: 330
Scopus: 173
: 88

 :
 :16151
 :13733
 :3984
 :849
-
- (1984)
 : 01.01.06 ( , )
 : 3.09.1946
: +7 (495) 941 01 79
: +7 (495) 984 81 39
E-mail: ,
: http://researchgate.net/profile/Vladimir_Popov12
 : , , , , , , , , , , , , , , .
 : 512.7, 512.745, 512.745.4, 512.743, 512.747, 512.76, 512.77, 512.71, 512.812, 512.813, 512, 519.4
 MSC: 14l30, 14l24, 14l35, 15a72, 14l40, 14l10, 14l15, 14l17, 14m17, 14m20, 20G05, 15A72

   

; ; , , ; ; ; ,

:

- 1969 . ( ). - (1972 .), - (1984 .), (1986 .). 1995–2012 . (0,5 2002 .). 2012 . - (0,5 ). 2002 . , 2017 . . .. ( ).

, (1986 .). 1982–1983 . . . (J. Dixmier, Quelques résults de finitude en théorie des invariants (d'après V. L. Popov), Séminaire Bourbaki, 38ème année 1985–86, no. 659, pp. 163–175).

(core) 2. 2010 . (2008–2010 .)

Fellow of the American Mathematical Society ( 2012), . http://www.ams.org/profession/fellows-list-institution

- ( 2016).

15 - (Ősterreichische Mathematische Gesellschaftndash;15 Kongress, Jahrestagung der Deutschen Mathematikervereinigung), , 2001 .

Honorable International John-von-Neumann Professur awarded by Technische Universität München, (2008 .). Invited Noted Scholar, Heidelberg University, (1998–1999 .). Invited Noted Scholar, University of British Columbia, Vancouver, (1996 .).

, , , , , , , , , , , , , , , , , , , , , , . (, 1989 .), 150- (, 1992 .), (1995 .) (1998 .), ", , " ( , , 2000 .), 80- . (, 2008 .).

Honorable Colligwood Lecture Durham University, (2007 .).

" ", " , ", " ", " ", " " (Universität Heidelberg, TUM), (ETH Zürich), (Utrecht University), (University of Michigan), (UBC), (The Erwin Schrödinger Institute, Innsbruck University), (Sydney University), (Lund University).

(Executive Managing Editor) Transformation Groups ( 1996 .), Birkhäuser Boston. , ( 2006 .) ( 2003 .), , Journal of Mathematical Sciences (c 2001 .), Springer, European Mathematical Society Newsletter (c 2015 .), EMS, Geometriae Dedicata ( 1989 1999 ), Kluwer. "Invariant Theory and Algebraic Transformation Groups" Encyclopaedia of Mathematical Sciences Springer ( 1998 .).

(1998–2000).

150 , 4 , 1 Annals of Mathematics, Journal of the American Mathematical Society, Compositio Mathematica, Transformation Groups, , , , Journal fur die reine und angewandte Mathematik, Commentarii Mathematici Helvetici, Contemporary Mathematics, Journal of Algebra, , Comptes Rendus de l'Academie des Sciences Paris, , Indagationes Mathematicae, , , Journal of the Ramanujan Mathematical Society, Documenta Mathematica, Pacific Journal of Mathematics, European Journal of Mathematics. (D. Mumford, J. Fogarty, Geometric Invariant Theory; H. Kraft, Geometrische Methoden in der Invariantentheorie; H. Derksen, G. Kemper, Computational Invariant Theory; F. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory; H. Kraft, P. Slodowy, T. A. Springer, Algebraic Transformation Groups and Invariant Theory; W. F. Santos, A. Rittatore, Actions and Invariants of Algebraic Groups; B. Sturmfels, Algorithms in Invariant Theory; G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations; M. Lorenz, Multiplicative Invariant Theory; E. A. Tevelev, Projective Duality and Homogeneous Spaces ).

, The Erwin Schrödinger Institute, ( . , 2000 .) " , " (The Erwin Schrödinger Institute, , 2001 .).

(Principal Investigator) - CRDF " " (1996–1998 .). -- INTAS " " (1998–2000 .)

, - (1969 .)

=============================

:

● , (1970–72).

● () ( , ), (1972–73).

● (1972–74).

● — : (. . . . . ), , . . (1976–83). .

● 14 (1979).

● 100 , (1981–82).

● , (1986).

● , (1986–2011).

● ( ) (2003, . . . ). , ( –). Annals of Mathematics 2002 .

● (2005, . N. Lemire, Z. Reichstein) , 1846 . : , . (1975) . Journal of the American Mathematical Society 2005 .

● , (2010, . J.-L. Colliot-Thélène, B. Kunyavskiĭ, Z. Reichstein). – 1966 . . Compositio Mathematica 2010 .

● (1969) . (2011).

● ( ) , , . (2011).

● 1965 . . , ; , , , (1980–82, 2005).

===============================

():

● J. Olver, Classical Invariant Theory, London Math. Soc. Student Texts 44, Cambridge Univ. Press, 1999:

``[] a vigorous, new Russian school of invariant theorists, led by Popov [181] and Vinberg [226] who have pushed the theory into fertile new areas. []"

● Popov, V. L. Groups, Generators, Syzygies, and Orbits in Invariant Theory. Transl. of Math. Monographs, 100. Amer. Math. Soc., Providence, RI, 1992. vi+245 pp.:

— G. Schwarz (Bull of Amer. Math. Soc., 29 (1993), no. 2, 299–304):

``[] Popov is a leader in Invariant theory, and the articles in this book were important to that fields development. []

``[] There has been an explosion of activity in this area over the last ten years. Popov's work was seminal. []

— M. Brion (Math. Reviews 92g:14054) :

``[ ] The authors results have been the starting point for research trends in invariant theory: for example, classification of representations of semisimple groups with ``good " properties, and also embedding theory of homogeneous spaces. []

● . . , . . , , ., . . ., . . , . 55, , ., 1989, 137314, . .: V. L. Popov, E. B. Vinberg, Invariant Theory, Encycl. Math. Sci., Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284:

— N. Andruskiewitsch (Zentralblatt Math. 735.14010):

``[] The paper under review, written by two of the main contributors in this last period, [] should be considered as a book, which is probably the format it would have if translated. []"

— P. E. Newstead (Math. Reviews 92d:14010):

``This article is [] by two of todays leading experts in the field and will undoubtedly serve as a major source of information on the subject. []"

● Y. André, Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence, Ann. Sci. Ec. Norm. Sup. (4) 47 (2014), no. 2, 449--467:

``After pioneering work by Grosshans, Luna, Popov, Vinberg and others in the seventies, the study of quasi-homogeneous G-varieties, i.e., algebraic G-varieties with a dense G-orbit, has now become a rich and deep theory.

● D. Luna et Th. Vust, Plongements despaces homogènes, Comment. Math. Helvetici 58 (1983), 186245:

``Nous devons notre point de départ bien évidemment à la théorie des plongements toriques ([5], [6]), mais aussi à article [10] de V. L. Popov, dans lequel est donnée la classification des espaces presque-homogènes affines normaux sous SL(2) ( [10] — . . , SL(2), . . . ., 37:4 (1973), 792832).

● . III . , , ., , 1987:

``[] 4 SL(2)-, .. SL(2)-, . . . [1] '' ( [1] — . . , SL(2), . . . ., 37:4 (1973), 792832).

● Algebraic Transformation Groups and Invariant Theory, DMV Seminar, Band 13, Birkhäuser, 1989, p. 72:

``In this paragraph we explain some classical results about the Picard group Pic G ([]; [Po74]; [])" ( [Po74] — . . , , . , . . 38 (1974), 294–322).

● H. Derksen, H. Kraft, Constructive Invariant theory, in: Algèbre Non Commutative, Groupes Quantiques et Invariants (Reims, 1995), Sémin. Congr., Vol. 36, Soc. Math. France, Paris, 1997, pp. 221–244:

``It took almost a century until Vladimir Popov determined a general bound for β(V ) for any semi-simple group G ([Pop 81/82])" ( [Pop 81/82] — V. Popov, Constructive Invariant theory, Astérisque 87–88 (1981), 303–334, . . , , . , . . 45 (1981), 1100–1120).

● J. Elmer, M. Kohls, Zero-separating invariants for finite groups, J. Algebra 411 (2014), 92–113:

```One of the most celebrated results of 20th century invariant theory is the theorem of Nagata [12] and Popov [13] which states that k[X]^G is finitely generated for all affine G-varieties X if and only if G is reductive'' ( [13] — . . , , , 249:3 (1979), 551–555).

● (. 161) D. Mumford, J. Fogarty, Geometric Invariant Theory, 2nd ed., Ergebnisse der Math. Und ihrer Grenzgebiete, Bd. 34, Springer-Verlag, Berlin, 1982:

``[] The striking result due to Kac, Popov, Vinberg ([], [166], []) is the following Theorem [] ( [166] — V. G. Kac, V. L. Popov, E. B. Vinberg, Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, C. R. Acad. Sci. Paris Sér. A-B, 283:12 (1976), A875A878).

● H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a C-action, Osaka J. Math. 42 (2005), no. 4, 931–974:

``By classical results [] of Popov [Po], []" ( [Po] — . . , , , . , . . 37 (1973), 1038–1055).

● L. E. Renner, Orbits and invariants of visible group actions, Transform. Groups 17 (2012), no. 4, 1191–1208:

``We now introduce the following definition (Definition 1.10 below). It is one of the key notions in the study of invariants.[...] The notion of a stable action was first introduced in [7] by V. L. Popov. There he establishes a criterion of stability for semisimple groups (Theorem 1 of [7]) ( Definition 1.10 — , [7] — . . , , . , . . 36 (1972), 371–385).

● N. Perrin, On the geometry of spherical varieties, Transform. Groups 19 (2014), no. 1, 171–223:

``It is a classical problem to ask which product of projective rational homogeneous spaces $\prod_i G/P_i$ has a dense G-orbit. This is solved in [141] if all the parabolic subgroups agree ( [141] — V. L. Popov, Generically multiple transitive algebraic group actions, in: Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (Mumbai, 2004), Tata Institute of Fundamental Research, Vol. 19, Narosa, internat. distrib. by AMS, New Delhi, 2007, pp. 481–523).

● A. Guld, Boundedness properties of automorphism groups of forms of flag varieties, arXiv:1806.05400v1 [math.AG] 14 Jun 2018:

``Recently there have been great interest in investigating the finite subgroups of biregular and birational automorphism groups of algebraic varieties. The Jordan property lies in the center of attention. <...> Research about investigating Jordan properties for birational and biregular automorphism groups of varieties was initiated by V. L. Popov in [Po11] ( [Po11]--- V. L. Popov. On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, Proceedings of the conference on Affine Algebraic Geometry held in Professor Russells honour, 15 June 2009, McGill Univ., Montreal., Centre de Recherches Mathématiques CRM Proc. and Lect. Notes, Vol. 54, 289311, 2011).

   
:
  1. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet  zmath  isi  elib  scopus
  2. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet  zmath  isi  elib  scopus
  3. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet  zmath
  4. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406  mathscinet
  5. V. L. Popov, Discrete iomplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 .  mathscinet  zmath

http://www.mathnet.ru/rus/person8935
http://scholar.google.com/citations?user=Qcve-A0AAAAJ&hl=ru
http://zbmath.org/authors/?q=ai:popov.vladimir-l
https://mathscinet.ams.org/mathscinet/MRAuthorID/191510
http://elibrary.ru/author_items.asp?authorid=103605
http://orcid.org/0000-0003-0990-2898
http://www.researcherid.com/rid/C-3495-2014
http://www.scopus.com/authid/detail.url?authorId=13605069500
https://www.researchgate.net/profile/Vladimir_Popov12
http://arxiv.org/a/popov_v_1

:
| | | | | |


1. . . , “ ا֧ ԧѧ ֧ާߧ”, ٧. . i֧. ާѧ֧. ( )  mathnet

   2018
2. Vladimir L. Popov, “Modality of representations, and packets for $\theta$-groups”, Lie Groups, Geometry, and Representation Theory. In honor of Bertram Kostant, Progress in Mathematics, 326, eds. Victor G. Kac, Vladimir L. Popov, Birkhäuser, Boston, 2018, 459–579 (to appear) , arXiv: 1707.07720}{1707.07720}
3. Vladimir L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Mathematical Notes, 103:5 (2018), 811–819 , arXiv: 1804.00323  mathnet  crossref  isi  scopus; Vladimir L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819  crossref  isi  scopus
4. . . , “iاڧާѧ֧ާ ܧߧ֧ߧ ԧ ҧڧѧڧߧѧݧߧ ѧӧާڧ٧ާ”, ܧ. , 482:1 (2018) ( ) , 5 .; V. L. Popov, “Compressible finite groups of birational automorphisms”, Dokl. Math., 98:2 (2018), 1–3 , 5 pp.  crossref
5. . . , . . ѧڧ, “ڧ ڧ֧ ܧߧ֧ ڧݧӧ ݧ”, ܧ. , 2018 ( ) , 5 .; V. L. Popov, Yu. G. Zarhin, “Types of root systems in number fields”, Dokl. Math., 2018 (to appear) , 5 pp.
6. Vladimir L. Popov, Yuri G. Zarhin, Root systems in number fields, 2018 , 15 pp., arXiv: 1808.01136
7. Vladimir L. Popov, Three plots about the Cremona groups, 2018 , 27 pp., arXiv: 1810.00824
8. Victor G. Kac, Vladimir L. Popov, Editors, Lie Groups, Geometry, and Representation Theory. In honor of Bertram Kostant, Progress in Mathematics, 326, Birkhäuser, Boston, 2018 (to appear) , 540 pp.
9. Vladimir L. Popov, Yuri G. Zarhin, Root symstems in number fields, Preprint MPIM 18-38, Max-Planck-Institut fr Mathematik, Bonn, 2018 ( ) , 19 . www.mpim-bonn.mpg.de/preblob/5898

   2017
10. Vladimir L. Popov, “Do we create mathematics or do we gradually discover theories which exist somewhere independently of us?”, Eur. Math. Soc. Newsl., 107 (2017), 37  mathnet
11. . . , “֧ݧ֧ӧܧڧ էԧ ԧ ֧ާߧ”, ѧ֧. ٧ѧާ֧ܧ, 102:1 (2017), 72–80  mathnet (.: 1)  crossref  mathscinet  isi (.: 2)  elib; V. L. Popov, “Borel subgroups of Cremona groups”, Mathematical Notes, 102:1 (2017), 60-67 link.springer.com/article/10.1134/S0001434617070070  crossref  mathscinet  isi (cited: 2)  scopus
12. Vladimir L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, 2017 , 12 pp., arXiv: 1707.06914v1
13. Vladimir L. Popov, “Bass' triangulability problem”, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Kinokuniya, Tokyo, 2017, 425–441 bookstore.ams.org/aspm-75/, arXiv: 1504.03867  mathnet  isi
14. . . , “ڧܧ֧ߧ ԧ, اëߧߧ ܧާݧ֧ܧߧާ ѧا֧ߧڧާ”, VI ܧߧ֧֧ߧڧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ֧ާ֧ڧ ܧާݧ֧ܧߧާ ѧߧѧݧڧ٧ էݧ ާݧէ ާѧ֧ާѧڧܧ ڧ, ISBN 978-5-906619-40-2 (ڧݧڧѧ i() ڧ. . . ާߧӧ, . اާ ѧߧԧ֧ݧܧ ҧݧѧ, ڧ, 25–30 ѧӧԧ 2017 .), ѧ֧ާѧڧ֧ܧڧ ڧߧڧ ڧ. . . i֧ܧݧӧ ڧۧܧ ѧܧѧէ֧ާڧ ߧѧ, 2017, 13–14 www.mathnet.ru/ConfLogos/1006/thesis-cite.pdf
15. . . , “ ާէѧݧߧ ֧էѧӧݧ֧ߧڧ”, ܧ. , 475:1 (2017), 14–16  mathnet  isi  elib; V. L. Popov, “On modality of representations”, Dokl. Math., 96:1 (2017), 312–314  crossref  isi  scopus

   2016
16. Vladimir L. Popov, “Birational splitting and algebraic group actions”, Eur. J. Math., 2:1 (2016), 283–290 https://www.math.uni-bielefeld.de/LAG/man/552.pdf, arXiv: 1502.02167  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 1)
17. . . , . . iܧڧ, ߧѧݧڧڧ֧ܧѧ ԧ֧ާ֧ڧ. ֧ҧߧڧ ѧܧڧܧ, ѧܧѧݧѧӧ. ܧѧէ֧ާڧ֧ܧڧ ܧ, 2- ڧ٧., ֧. է., ѧۧ, ܧӧ, 2016 , 232 . http://urait.ru/catalog/388730
18. . . , “ݧԧ֧ҧ ҧ֧ԧ ڧ: ѧڧߧѧݧߧѧ ѧѧާ֧ڧ٧ѧڧ ߧާѧݧߧ ާ”, ݧԧ֧ҧ, ԧ֧ާ֧ڧ ֧ڧ ڧ֧, iҧߧڧ ѧ֧.  75-ݧ֧ڧ էߧ اէ֧ߧڧ ѧܧѧէ֧ާڧܧ ݧѧէڧާڧ ֧ӧڧ ݧѧߧӧ, . , 292, , ., 2016, 209–223 , arXiv: 1411.6570  mathnet (.: 1)  crossref  mathscinet  isi (.: 1)  elib; V. L. Popov, “Algebras of General Type: Rational Parametrization and Normal Forms”, Proc. Steklov Inst. Math., 292:1 (2016), 202–215  crossref  mathscinet  isi (cited: 1)  elib  scopus
19. . . , “էԧ ԧ ֧ާߧ: ҧݧ֧ާ ѧ”, ܧ. , 468:5 (2016), 499–501  mathnet  crossref  mathscinet  zmath  isi  elib; V. L. Popov, “Subgroups of the Cremona groups: Bass' problem”, Dokl. Math., 93:3 (2016), 307–309  crossref  mathscinet  zmath  isi  elib  scopus
20. . . , “ѧڧߧѧݧߧ (ܧ)ڧ֧էڧߧ֧ߧߧ ҧڧ”, ֧اէߧѧէߧѧ ܧߧ֧֧ߧڧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ֧ާ֧ڧ, ܧާݧ֧ܧߧާ ѧߧѧݧڧ٧ ܧާ֧ߧ ѧݧԧ֧ҧ (ڧݧڧѧ i() ڧ. . . ާߧӧ, . اާ ѧߧԧ֧ݧܧ ҧݧѧ, ڧ, 3–9 ѧӧԧ 2016 .), ѧ֧ާѧڧ֧ܧڧ ڧߧڧ ڧ. . . i֧ܧݧӧ ڧۧܧ ѧܧѧէ֧ާڧ ߧѧ, ܧӧ, 2016, 84–85 http://www.mathnet.ru/ConfLogos/805/thesis.pdf

   2015
21. Vladimir L. Popov, “Around the Abhyankar–Sathaye conjecture”, Documenta Mathematica, 2015, Extra Volume:Alexander S. Merkurjev's Sixtieth Birthday (The Book Series, Vol. 7), 513–528 https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html, arXiv: 1409.6330 (ISSN 1431-0643 (INTERNET), 1431-0635 (PRINT))  mathnet  mathscinet
22. . . , “ߧ֧ߧ էԧ ԧ էڧ֧ާڧ٧ާ”, ٧ҧѧߧߧ ӧ ާѧ֧ާѧڧܧ ާ֧ѧߧڧܧ, iҧߧڧ ѧ֧.  150-ݧ֧ڧ էߧ اէ֧ߧڧ ѧܧѧէ֧ާڧܧ ݧѧէڧާڧ ߧէ֧֧ӧڧ i֧ܧݧӧ, . , 289, , ., 2015, 235–241  mathnet (.: 7)  crossref  isi (.: 8)  elib; V. L. Popov, “Finite subgroups of diffeomorphism groups”, Proc. Steklov Inst. Math., 289 (2015), 221–226 , arXiv: 1310.6548v2  crossref  isi (cited: 8)  elib  scopus (cited: 4)
23. . . , “ҧݧ֧ާ ѧ ڧѧߧԧݧڧ֧ާ էԧ ԧ ֧ާߧ”, V ܧݧ-ܧߧ֧֧ߧڧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ֧ާ֧ڧ ܧާݧ֧ܧߧާ ѧߧѧݧڧ٧ էݧ ާݧէ ާѧ֧ާѧڧܧ ڧ (. اާ ѧߧԧ֧ݧܧ ҧݧѧ, ڧݧڧѧ i֧ӧ֧ߧԧ (ܧڧ֧ܧԧ) ֧է֧ѧݧߧԧ ߧڧӧ֧ڧ֧ ڧ. . . ާߧӧ, 17–22 ѧӧԧ 2015 .), ѧ֧ާѧڧ֧ܧڧ ڧߧڧ ڧ. .. i֧ܧݧӧ ڧۧܧ ѧܧѧէ֧ާڧ ߧѧ, ܧӧ, 2015, 83–87 http://www.mathnet.ru/ConfLogos/604/thesis-Koryazhma.pdf
24. . . , “ڧݧ ܧާߧ֧ߧ ߧݧ-ܧߧ”, iӧ֧ާ֧ߧߧ ҧݧ֧ާ ާѧ֧ާѧڧܧ, ާ֧ѧߧڧܧ ާѧ֧ާѧڧ֧ܧ ڧ٧ڧܧ, iҧߧڧ ѧ֧, . , 290, , ., 2015, 95–101 , arXiv: 1503.08303  mathnet (.: 2)  crossref  isi (.: 2)  elib; V. L. Popov, “Number of components of the nullcone”, Proc. Steklov Inst. of Math., 290 (2015), 84–90 , arXiv: 1503.08303  crossref  isi (cited: 2)  elib  scopus (cited: 1)
25. Vladimir L. Popov, “On the equations defining affine algebraic groups”, Pacific J. Math., 279:1-2, Special issue. In memoriam: Robert Steinberg (2015), 423–446 http://msp.org/pjm/2015/279-1/p19.xhtml, arXiv: 1508.02860  mathnet  crossref  mathscinet  isi  scopus (cited: 1)

   2014
26. V. L. Popov, “Quotients by conjugation action, cross-sections, singularities,and representation rings”, Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras (Mathematisches Forschungsinstitut Oberwolfach, 19 January – 25 January 2014), Oberwolfach Reports, 11, no. 1, European Mathematical Society, 2014, 156–159
27. V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2, special issue dedicated to E. B. Dynkin's 90th anniversary (2014), 549–568 https://www.math.uni-bielefeld.de/LAG/man/523.pdf, arXiv: 1401.0278  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 6)  elib (cited: 1)  scopus (cited: 5)
28. V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proceedings in Mathematics & Statistics, 79, Springer, 2014, 185–213 https://www.math.uni-bielefeld.de/LAG/man/508.pdf, arXiv: 1307.5522  mathnet  crossref  mathscinet  zmath  scopus (cited: 19)
29. . . , “էѧߧӧ ԧ ѧӧާڧ٧ާ ާߧԧҧѧ٧ڧ”, iӧ֧ާ֧ߧߧ ҧݧ֧ާ ާѧ֧ާѧڧܧ ֧֧ӧ֧ߧߧߧѧߧԧ ٧ߧѧߧڧ, ѧ֧ڧѧݧ ާ֧اէߧѧէߧ ߧѧߧ ܧߧ֧֧ߧڧ (اާ, 15–18 ֧ߧҧ 2014 .), i֧ӧ֧ߧ (ܧڧ֧ܧڧ) ֧է֧ѧݧߧ ߧڧӧ֧ڧ֧ ڧ. . . ާߧӧ, اާ, 2014, 66–70

   2013
30. . . , “ ԧѧ ֧ާߧ”, ٧. . i֧. ާѧ֧., 77:4, ֧ڧѧݧߧ ӧ, ӧ֧ߧߧ 90-ݧ֧ڧ . . ѧѧ֧ӧڧ (2013), 103–134  mathnet (.: 4)  crossref  mathscinet (.: 2)  zmath  adsnasa  isi (.: 6)  elib (.: 1); V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4, special issue on the occasion of I. R. Shafarevich's 90th anniversary (2013), 742–771 https://www.math.uni-bielefeld.de/LAG/man/474.pdf  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 2)  scopus (cited: 2)
31. V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry, Proceedings of the conference on the occasion of M. Miyanishi's 70th birthday (Osaka, Japan, 3–6 March 2011), World Scientific Publishing Co., Singapore, 2013, 213–242 https://www.math.uni-bielefeld.de/LAG/man/448.pdf  crossref  isi (cited: 8)
32. V. L. Popov, “Algebraic groups and the Cremona group”, Algebraic groups (Mathematisches Forschungsinstitut Oberwolfach, 7 April – 13 April 2013), Oberwolfach Reports, 10, no. 2, European Mathematical Society, 2013, 1053–1055
33. V. L. Popov, “Rationality and the FML invariant”, Journal of the Ramanujan Mathematical Society, 28A (2013), 409–415 http://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-017.html, https://www.math.uni-bielefeld.de/LAG/man/485.pdf (special Issue-2013 dedicated to C. S. Seshadri's 80th birthday)  mathnet  mathscinet (cited: 1)  zmath  isi (cited: 2)

   2012
34. V. L. Popov, “Problems for the problem session”, International conference “Groups of Automorphisms in Birational and Affine Geometry” (Levico Terme (Trento), October 29th – November 3rd, 2012), 2012 , 2 pp. http://www.science.unitn.it/cirm/Trento_postersession.html

   2011
35. J.-L. Colliot-Thélène, B. Kunyavskiĭ, V. L. Popov, Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math., 147:2 (2011), 428–466  crossref  mathscinet (cited: 12)  zmath  isi (cited: 8)  scopus (cited: 6)
36. V. L. Popov, “Cross-sections, quotients, and representation rings of semisimple algebraic groups”, Transform. Groups, 16:3, special issue dedicated to Tonny Springer on the occasion of his 85th birthday (2011), 827–856  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 4)  scopus (cited: 4)
37. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell Festschrift, CRM Proceedings and Lecture Notes, 54, Amer. Math. Soc., 2011, 289–311 https://www.math.uni-bielefeld.de/LAG/man/375.pdf  mathscinet (cited: 13)  zmath  isi (cited: 20)
38. . . , “ߧӧѧڧѧߧߧ ѧڧߧѧݧߧ ߧܧڧ ߧ ݧ ѧݧԧ֧ҧѧ ԧڧ֧٧ ֧ݧѧߧէ–ڧڧݧݧӧ”, ݧԧ֧ҧ ާѧ֧ާѧڧ֧ܧѧ ݧԧڧܧ, ֧اէߧѧէߧѧ ܧߧ֧֧ߧڧ, ӧ֧ߧߧѧ 100-ݧ֧ڧ էߧ اէ֧ߧڧ ֧ . . ٧ӧ (ѧ٧ѧߧ, 25–30 ֧ߧҧ 2011 .), ѧ٧ѧߧܧڧ ֧. -, ѧ٧ѧߧ, 2011, 19

   2010
39. V. Popov, “Discrete complex reflection groups”, Geometry, topology, algebra and number theory, applications, The international conference dedicated to the 120th anniversary of Boris Nikolaevich Delone (1890–1980) (August 16–20, 2010), Steklov Mathematical Institute, Moscow State University, Moscow, 2010, 140

   2009
40. . . , “ӧ ҧڧ: ܧԧէ էߧ ݧ֧اڧ  ٧ѧާܧѧߧڧ էԧ?”, ߧԧާ֧ߧѧ ѧݧԧ֧ҧѧڧ֧ܧѧ ԧ֧ާ֧ڧ, iҧߧڧ ѧ֧. ӧѧ֧ ѧާ ݧ֧ߧ-ܧ֧ߧէ֧ߧ ѧڧݧڧ ݧ֧ܧ֧֧ӧڧ ܧӧܧڧ, . , 264, , ., 2009, 152–164  mathnet (.: 7)  mathscinet (.: 8)  isi (.: 5)  elib; V. L. Popov, “Two orbits: When is one in the closure of the other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158  crossref  mathscinet  isi (cited: 5)  elib (cited: 4)  scopus (cited: 4)
41. . . , “ݧԧ֧ҧѧڧ֧ܧڧ ܧߧ”, ѧ֧. ٧ѧާ֧ܧ, 86:6 (2009), 947–949  mathnet (.: 1)  crossref  mathscinet  zmath  isi (.: 1); V. L. Popov, “Algebraic Cones”, Math. Notes, 86:6 (2009), 892–894  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus

   2008
42. V. L. Popov, “Irregular and singular loci of commuting varieties”, Transformation Groups, 13:3-4, special issue dedicated to Bertram Kostant on the occasion of his 80th birthday (2008), 819–837  crossref  mathscinet (cited: 9)  zmath  isi (cited: 10)  elib (cited: 8)  scopus (cited: 12)

   2007
43. V. L. Popov, “Generically multiple transitive algebraic group actions”, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (Mumbai, 2004), Tata Institute of Fundamental Research, 19, Narosa Publishing House, Internat. distrib. by American Mathematical Society, New Delhi, 2007, 481–523  mathscinet (cited: 12)  zmath
44. V. L. Popov, “Tensor product decompositions and open orbits in multiple flag varieties”, J. Algebra, 313:1 (2007), 392–416  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 4)
45. N. Lemire, V. L. Popov, Z. Reichstein, “On the Cayley degree of an algebraic group”, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 87–97  mathscinet  zmath
46. V. L. Popov, “Quasihomogeneous affine threefolds”, Affine algebraic geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 13–16 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
47. V. L. Popov, “Birationally nonequivalent linear actions. Cayley degrees of simple algebraic groups. Singularities of two-dimensional quotients”, Affine Algebraic Geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 75–78 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
48. V. L. Popov, “Finite linear groups, lattices, and products of elliptic curves”, International Algebraic Conference Dedicated to the 100th Anniversary of D. K. Faddeev (St. Petersburg, September 24–29, 2007), St. Petersburg State University, St. Petersburg Department of the V. A. Steklov Institute of Mathematics RAS, 2007, 148–149

   2006
49. V. L. Popov, Yu. G. Zarhin, “Finite linear groups, lattices, and products of elliptic curves”, J. Algebra, 305:1 (2006), 562–576  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
50. M. Losik, P. W. Michor, V. L. Popov, “On polarizations in invariant theory”, J. Algebra, 301:1 (2006), 406–424  crossref  mathscinet (cited: 7)  zmath  isi (cited: 8)  elib (cited: 7)  scopus (cited: 8)
51. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet (cited: 9)  zmath  isi (cited: 9)  elib (cited: 8)  scopus (cited: 9)

   2005
52. V. L. Popov, “Projective duality and principal nilpotent elements of symmetric pairs”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 215–222  mathscinet (cited: 2)  zmath
53. V. L. Popov, “Roots of the affine Cremona group; Rationality of homogeneous spaces; Two locally nilpotent derivations”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 12–16

   2004
54. V. L. Popov, E. A. Tevelev, “Self-dual projective algebraic varieties associated with symmetric spaces”, Algebraic transformation groups and algebraic varieties, Proceedings of the International conference “Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory” (the Erwin Schrödinger Institute, Vienna, October 22–26, 2001), Invariant Theory and Algebraic Transformation Groups, III, Encyclopaedia of Mathematical Sciences, 132, eds. V. L. Popov, Springer, Heidelberg, Berlin, 2004, 131–167  mathscinet (cited: 7)  zmath  isi (cited: 6)
55. V. L. Popov, “Moment polytopes of nilpotent orbit closures; Dimension and isomorphism of simple modules; and Variations on the theme of J. Chipalkatti”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 193–198  mathscinet (cited: 2)  zmath
56. N. A'Campo, V. L. Popov, The computer algebra package HNC (Hilbert Null Cone), http://www.geometrie.ch/, Mathematisches Institut Universität Basel, Basel, 2004 , 12 pp.

   2003
57. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet (cited: 6)  zmath  isi (cited: 6)  elib (cited: 5)  scopus (cited: 5)
58. M. Losik, P. W. Michor, V. L. Popov, “Invariant tensor fields and orbit varieties for finite algebraic transformation groups”, A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory (Chennai, 2002), Hindustan Book Agency (India), Chennai, 2003, 346–378  mathscinet (cited: 4)  zmath
59. . . , “ߧ ߧݧ- ڧݧҧ֧”, ֧ڧ ڧ֧, ѧݧԧ֧ҧ ѧݧԧ֧ҧѧڧ֧ܧѧ ԧ֧ާ֧ڧ, iҧߧڧ ѧ֧.  80-ݧ֧ڧ էߧ اէ֧ߧڧ ѧܧѧէ֧ާڧܧ ԧ ڧݧѧӧӧڧ ѧѧ֧ӧڧ, . , 241, ѧܧ, ., 2003, 192–209  mathnet (.: 15)  mathscinet (.: 10)  zmath; V. L. Popov, “The Cone of Hilbert nullforms”, Proc. Steklov Inst. Math., 241 (2003), 177–194  mathscinet  zmath

   2002
60. V. L. Popov, “Self-dual algebraic varieties and nilpotent orbits”, Proceedings of the international conference “Algebra, Arithmetic and Geometry”, Part II (Mumbai, 2000), Tata Institute of Fundamental Research, 16, Narosa Publishing House, intern. distrib. by American Mathematical Society, New Delhi, 2002, 509–533  mathscinet (cited: 6)  zmath
61. . . , “ߧܧڧӧߧѧ ֧ڧ ڧߧӧѧڧѧߧ”, i. ѧ֧, ӧ֧ߧߧ 40-ݧ֧ڧ , , ., 2002, 103–106

   2001
62. . . , “ ݧڧߧާڧѧݧߧ ѧӧާڧ٧ާѧ ѧڧߧߧ ѧߧ”, ٧. . i֧. ާѧ֧., 65:3 (2001), 153–174  mathnet (.: 5)  crossref  mathscinet (.: 2)  zmath; V. L. Popov, “On polynomial automorphisms of affine spaces”, Izv. Math., 65:3 (2001), 569–587  crossref  mathscinet  zmath  elib  scopus
63. V. Popov, “Modern developments in invariant theory”, Plenary Address at Österreichische Mathematische Gesellschaft – 15 Kongress, Jahrestagung der Deutschen Mathematikervereinigung (Vienna, 16–22 September), Deutsche Mathematikervereinigung, Österreichische Mathematische Gesellschaft, 2001, 48

   2000
64. . . ѧݧ, . . , “ ߧ֧էӧڧاߧ ܧѧ ѧݧԧ֧ҧѧڧ֧ܧڧ է֧ۧӧڧ ߧ $\mathbb{C}^n$”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 34:1 (2000), 41–50  mathnet  crossref  mathscinet  zmath  isi; P. I. Katsylo, V. L. Popov, “On Fixed Points of Algebraic Actions on $\mathbb{C}^n$”, Funct. Anal. Appl., 34:1 (2000), 33–40  crossref  mathscinet  zmath  isi  scopus
65. V. L. Popov, Generators and relations of the affine coordinate rings of connected semisimple algebraic groups, preprint ESI, no. 972, The Erwin Schrödinger Institute for Mathematical Physics, Vienna, 2000 , 12 pp.

   1999
66. . . , . . iܧڧ, ߧѧݧڧڧ֧ܧѧ ԧ֧ާ֧ڧ. ֧ܧڧ ѧܧڧ֧ܧڧ ٧ѧߧڧ, , i, ., 1999 , ii+232 .
67. Vladimir Popov, “Algebraic groups of automorphisms of polynomial rings”, Colloque International “Théorie des Groupes”. Journées Solstice d'été 1999 (Institut de Mathématiques de Jussieu, 75005 Paris, France, 17, 18, 19 juin 1999), l'Université Paris 7–Denis Diderot, 1999, 15 https://www.imj-prg.fr/grg/archives/Colloques/1999Solstice/

   1998
68. V. L. Popov, Discrete complex reflection groups, Workshop on Reflection Groups, January 13–21, SISSA, Trieste, Italy, 1998 , 23 pp.
69. . . , “ާާ֧ߧѧڧ ѧҧѧ . ڧݧҧ֧ “ ֧ڧ ѧݧԧ֧ҧѧڧ֧ܧڧ ” “ ݧߧ ڧ֧ާ ڧߧӧѧڧѧߧ””: . ڧݧҧ֧, ٧ҧѧߧߧ է, . 1, ѧܧڧѧ, ., 1998, 490–517
70. V. L. Popov, “Reductive subgroups of $Aut(A^3)$ and $Aut(A^4)$”, Tagungsbericht 14/1998, Algebraische Gruppen, 05.04–11.04.1998 (Mathematisches Forschungsinstitut Oberwolfach, 05.04–11.04,1998), v. 14, Mathematisches Forschungsinstitut Oberwolfach, 1998, 13–14 https://www.mfo.de/occasion/9815/www_view

   1997
71. V. Popov, G. Röhrle, “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, 9, Cambridge University Press, Cambridge, 1997, 297–320  mathscinet (cited: 16)  zmath
72. V. L. Popov, “A finiteness theorem for parabolic subgroups of fixed modality”, Indag. Math. (N.S.), 8:1 (1997), 125–132  crossref  mathscinet (cited: 7)  zmath  isi (cited: 10)  elib (cited: 9)  scopus (cited: 10)
73. . . , “ ٧ѧާܧߧ ߧ֧ܧ ҧڧ ѧݧԧ֧ҧѧڧ֧ܧڧ ԧ”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 31:4 (1997), 76–79  mathnet (.: 2)  crossref  mathscinet (.: 2)  zmath  isi (.: 2); V. L. Popov, “On the Closedness of Some Orbits of Algebraic Groups”, Funct. Anal. Appl., 31:4 (1997), 286–289  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
74. Vladimir Popov, “Orbits of parabolic subgroups acting on its unipotent radicals”, Tagungsbericht 42/1997. Einh"ullende Algebren und Darstellungstheorie. 02.11–08.11.1997 (Mathematisches Forschungsinstitut Oberwolfach. 02.11–08.11.1997), v. 42, Mathematisches Forschungsinstitut Oberwolfach, 1997, 13 http://oda.mfo.de/bsz325095604.html

   1995
75. V. L. Popov, “An analogue of M. Artin's conjecture on invariants for nonassociative algebras”, Lie Groups and Lie Algebras: E. B. Dynkin's Seminar, American Mathematical Society Translations Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 121–143  mathscinet (cited: 4)  zmath  isi (cited: 24)

   1994
76. V. Popov, “Sections in invariant theory”, Proceedings of The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, 315–361  mathscinet (cited: 28)
77. V. L. Popov, “Divisor class groups of the semigroups of the highest weights”, J. Algebra, 168:3 (1994), 773–779  crossref  mathscinet  zmath  isi  elib  scopus
78. V. L. Popov, E. B. Vinberg, “Invariant theory”, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, Springer-Verlag, Berlin, Heidelberg, New York, 1994, 123–284

   1993
79. V. L. Popov, “Singularities of closures of orbits”, Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conference Proceedings, 7, Bar-Ilan University, Ramat Gan, 1993, 133–141  mathscinet (cited: 1)  zmath

   1992
80. . . , “ ݧ֧ާާ «i֧ѧէ»”, ڧާ֧ڧܧ ԧ֧ާ֧ڧ ާߧԧҧѧ٧ڧ, iѧާѧܧڧ ԧ. -, iѧާѧ, 1992, 133–139  mathscinet  zmath
81. V. L. Popov, È. B. Vinberg, “Some open problems in invariant theory”, Proc. Internat. Conf. in Algebra, Part 3 (Novosibirsk, 1989), Contemporary Mathematics, 131, Part 3, American Mathematical Society, Providence, RI, 1992, 485–497  crossref  mathscinet (cited: 3)  isi (cited: 53)
82. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet (cited: 14)  zmath
83. V. L. Popov, “On the “lemma of Seshadri””, Lie Groups, Their Discrete Subgroups, and Invariant Theory, Advances in Soviet Mathematics, 8, Amer. Math. Soc., Providence, RI, 1992, 167–172  mathscinet (cited: 3)

   1991
84. V. L. Popov, “Invariant theory”, Algebra and Analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. Ser. 2, 148, Amer. Math. Soc., Providence, RI, 1991, 99–112  mathscinet (cited: 5)

   1990
85. V. L. Popov, “When are the stabilizers of all nonzero semisimple points finite?”, Operator algebras, unitary representations, nveloping algebras, and invariant theory (Paris, 1989), Progress in Mathematics, 92, Birkhäuser Boston, Boston, MA, 1990, 541–559  mathscinet (cited: 1)  isi (cited: 47)

   1989
86. V. L. Popov, “Some applications of algebra of functions on $G/U$”, Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conference Proceedings, 10, Amer. Math. Soc., Providence, RI, 1989, 157–166  mathscinet
87. . . , “ ѧӧާڧ٧ާ ѧݧԧ֧ҧ ާߧԧݧ֧ߧ”, ҧݧ֧ާ ѧݧԧ֧ҧ (ާ֧ݧ), . 4, ߧڧӧ֧ڧ֧ܧ, ڧߧ, 1989, 4–16 (Russian)  mathscinet (.: 1)
88. . . ڧߧҧ֧, . . , “֧ڧ ڧߧӧѧڧѧߧ”, ݧԧ֧ҧѧڧ֧ܧѧ ԧ֧ާ֧ڧ–4, ԧ ߧѧܧ ֧., i֧. iӧ֧. ҧ. ާѧ., ߧէѧ. ߧѧѧӧݧ֧ߧڧ, 55, , ., 1989, 137–309  mathnet (.: 76)  mathscinet (.: 129)  zmath
89. . . , “էݧ ܧߧ֧ߧާ ѧҧڧݧڧ٧ѧѧާ ߧ֧ߧݧ֧ӧ ݧ ݧ֧ާ֧ߧ”, է ާ֧اէߧѧ. ܧߧ֧. ѧާ . . ѧݧ֧ӧ (ӧڧҧڧ), ߧڧ ާѧ֧ާѧڧܧ i iii, ӧڧҧڧ, 1989, 108

   1988
90. . . , “ է֧ۧӧڧ ${\mathbf G}_a$ ߧ ${\mathbf A}^n$”, ڧާ֧ڧܧ ԧ֧ާ֧ڧ ާߧԧҧѧ٧ڧ, ۧҧ֧ӧܧڧ ԧ. -, ۧҧ֧, 1988, 93–98  mathscinet
91. . . , “ѧާܧߧ ҧڧ ҧ֧ݧ֧ӧܧڧ էԧ”, ѧ֧. ., 135(177):3 (1988), 385–402  mathnet (.: 3)  mathscinet (.: 4)  zmath; V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR-Sb., 63:2 (1989), 375–392  crossref  mathscinet  zmath

   1987
92. . . , “ݧ ӧ֧ܧ ֧ڧ ڧߧӧѧڧѧߧ”, ֧էݧԧڧ֧ܧڧ ѧߧѧݧڧ ާѧ֧ާѧڧ֧ܧڧ ֧ڧ, 38, iii, ֧٧ڧ. ë֧ߧ. . ڧݧ. (ާ֧.) ֧ާڧ., M., 1987, 235–256  mathscinet
93. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406  mathscinet (cited: 1)
94. V. L. Popov, “On actions of ${\mathbf G}_a$ on ${\mathbf A}^n$”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer, Berlin, 1987, 237–242  crossref  mathscinet (cited: 9)  isi (cited: 12)
95. . . , “iѧҧڧݧߧ է֧ۧӧڧ ҧ֧ݧ֧ӧܧڧ էԧ”, XIX ֧٧ߧѧ ѧݧԧ֧ҧѧڧ֧ܧѧ ܧߧ֧֧ߧڧ (ӧ), . 1, ߧڧ ާѧ֧ާѧڧܧ iii ڧ. . . i֧ܧݧӧ, ., 1987, 227

   1986
96. . . , “iԧڧӧѧߧڧ է֧ۧӧڧ ֧էܧڧӧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ԧ”, ѧ֧. ., 130(172):3(7) (1986), 310–334  mathnet (.: 30)  mathscinet (.: 30)  zmath; V. L. Popov, “Contractions of the actions of reductive algebraic groups”, Math. USSR-Sb., 58:2 (1987), 311–335  crossref  mathscinet  zmath
97. . . , “ էߧާ֧ߧ ߧڧ֧ߧߧ էԧѧ ԧ ѧӧާڧ٧ާ ѧݧԧ֧ҧ ާߧԧݧ֧ߧ”, X ֧٧ߧ ڧާ٧ڧ ֧ڧ ԧ (ڧߧ), ߧڧ ާѧ֧ާѧڧܧ ii, 1986, 182

   1985
98. H. Kraft, V. L. Popov, “Semisimple group actions on the three-dimensional affine space are linear”, Comment. Math. Helv., 60:3 (1985), 466–479  crossref  mathscinet (cited: 19)  zmath  isi (cited: 25)  elib (cited: 7)  scopus (cited: 24)

   1984
99. . . , “ާާ֧ߧѧڧ ѧҧѧ . ֧ۧݧ “֧ڧ ֧էѧӧݧ֧ߧڧ ߧ֧֧ӧߧ ݧ ԧ ާ ݧڧߧ֧ۧߧ ֧ҧѧ٧ӧѧߧڧ”, "iڧߧ ѧ٧ާ֧ߧ $n$" "ѧ٧ڧ ҧڧߧѧߧ ӧ֧ܧߧ ڧߧӧѧڧѧߧ, ڧާ֧ߧ֧ާ ֧ڧ ӧѧݧ֧ߧߧ":”, . ֧ۧݧ, ٧ҧѧߧߧ է, ѧܧ, ., 1984, 471–478, 461–467  mathscinet (.: 5)

   1983
100. V. L. Popov, “Homological dimension of algebras of invariants”, J. Reine Angew. Math., 341 (1983), 157–173  crossref  mathscinet (cited: 3)  zmath  isi (cited: 10)  scopus (cited: 9)
101. . . , “iڧ٧ڧԧڧ  ֧ڧ ڧߧӧѧڧѧߧ”, ٧. iii. i֧. ާѧ֧., 47:3 (1983), 544–622  mathnet (.: 5)  mathscinet (.: 2)  zmath; V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  crossref  mathscinet  zmath
102. . . , “ާݧԧڧ֧ܧѧ ѧ٧ާ֧ߧ ѧݧԧ֧ҧ ڧߧӧѧڧѧߧ”, XVII ֧٧ߧѧ ѧݧԧ֧ҧѧڧ֧ܧѧ ܧߧ֧֧ߧڧ (ڧߧ), ߧڧ ާѧ֧ާѧڧܧ ii, 1983, 152–153

   1982
103. V. L. Popov, Discrete iomplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 .  mathscinet (.: 14)  zmath
104. . . , “֧֧ާ ܧߧ֧ߧ էݧ ֧էѧӧݧ֧ߧڧ  ӧҧէߧ ѧݧԧ֧ҧ ڧߧӧѧڧѧߧ”, ٧. iii. i֧. ާѧ֧., 46:2 (1982), 347–370  mathnet (.: 4)  mathscinet  zmath; V. L. Popov, “A finiteness theorem for representations with a free algebra of invariants”, Math. USSR-Izv., 20:2 (1983), 333–354  crossref  mathscinet  zmath
105. . . ڧԧ֧, . . , . . iݧߧ֧, ѧէѧ ѧݧԧ֧ҧ, , ., 1982 , 98 .

   1981
106. V. L. Popov, “Constructive invariant theory”, Young Tableaux and Schur Functors in Algebra and Geometry (Toruń, 1980), Astérisque, 87, Soc. Math. France, Paris, 1981, 303–334  mathscinet (cited: 11)
107. . . , “ߧܧڧӧߧѧ ֧ڧ ڧߧӧѧڧѧߧ”, ٧. iii. i֧. ާѧ֧., 45:5 (1981), 1100–1120  mathnet (.: 5)  mathscinet (.: 3)  zmath; V. L. Popov, “The constructive theory of invariants”, Math. USSR-Izv., 19:2 (1982), 359–376  crossref  mathscinet  zmath
108. . . , “ݧߧ֧ߧڧ 3 ܧާ ֧֧ӧէ ܧߧڧԧ . iڧߧԧ֧, ֧ڧ ڧߧӧѧڧѧߧ”, ѧ֧ާѧڧܧ. ӧ ٧ѧҧ֧اߧ ߧѧܧ, 24, . . . , ڧ, ., 1981, 153–182

   1980
109. . . , “ާݧ֧ܧߧ ڧ֧ާ ܧߧ֧ ڧ ԧ ֧ۧݧ”, VII ֧٧ߧ ڧާݧ٧ڧ ֧ڧ ԧ (ѧߧ), ߧڧ ާѧ֧ާѧڧܧ i iii, ѧߧܧڧ ԧ. -, 1980, 91
110. V. L. Popov, “Constructive invariant theory”, Proc. internat. conf. “Young Tableaux and Schur Functions in Algebra and Geometry” (Toruń, Poland), Inst. Math. Acad. Polon. Sci., 1980, 10–11

   1979
111. . . , “ ֧֧ާ ڧݧҧ֧ ڧߧӧѧڧѧߧѧ”, ܧ. iii, 249:3 (1979), 551–555  mathscinet (.: 10)  zmath; V. L. Popov, “Hilbert's theorem on invariants”, Soviet Math. Dokl., 20:6 (1979), 1318–1322  zmath
112. . . , “ ֧ߧѧէѧ ҧݧ֧ާ ڧݧҧ֧”, XV ֧٧ߧѧ ѧݧԧ֧ҧѧڧ֧ܧѧ ܧߧ֧֧ߧڧ (ѧߧ), ߧڧ ާѧ֧ާѧڧܧ i iii, ѧߧܧڧ ԧ. -, 1979, 123

   1978
113. . . , “ݧѧڧڧܧѧڧ ڧߧ ѧ٧ާ֧ߧ ֧ߧѧէѧ”, է . ާѧ֧. ҧ֧ӧ, 37, , 1978, 173–217  mathnet (.: 1)  mathscinet (.: 2)  zmath; V. L. Popov, “Classification of spinors of dimension fourteen”, Trans. Mosc. Math. Soc., 1 (1980), 181–232  zmath
114. . . , “ݧԧ֧ҧѧڧ֧ܧڧ ܧڧӧ ҧ֧ܧߧ֧ߧ ԧ ѧӧާڧ٧ާ”, ѧ֧. ٧ѧާ֧ܧ, 23:2 (1978), 183–195  mathnet (.: 2)  mathscinet  zmath; V. L. Popov, “Algebraic curves with an infinite automorphism group”, Math. Notes, 23:2 (1978), 102–108  crossref  mathscinet  zmath  elib (cited: 1)  scopus (cited: 1)

   1977
115. . . , “ էߧ ԧڧ֧٧ i֧ۧߧҧ֧ԧ”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 11:1 (1977), 79–80  mathnet (.: 2)  mathscinet (.: 1)  zmath; V. L. Popov, “One conjecture of Steinberg”, Funct. Anal. Appl., 11:1 (1977), 70–71  crossref  mathscinet  zmath  scopus (cited: 1)
116. . . , “ݧѧڧڧܧѧڧ ڧߧ ѧ٧ާ֧ߧ ֧ߧѧէѧ”, , 32:1(193) (1977), 199–200  mathnet  mathscinet (.: 3)  zmath
117. . . , “ڧѧݧݧԧѧڧ֧ܧڧ ԧ, اէ֧ߧߧ ѧڧߧߧާ ߧڧѧߧާ ѧا֧ߧڧާ”, 14- ֧٧ߧѧ ѧݧԧ֧ҧѧڧ֧ܧѧ ܧߧ֧֧ߧڧ (ӧڧҧڧ), . 1, ߧڧ ާѧ֧ާѧڧܧ i iii, ӧڧҧڧܧڧ ԧ. -, 1977, 55–56

   1976
118. V. G. Kac, V. L. Popov, E. B. Vinberg, “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:12 (1976), A875–A878  mathscinet (cited: 12)
119. . . , “֧էѧӧݧ֧ߧڧ ӧҧէߧ ާէݧ֧ ܧӧѧڧѧߧ”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 10:3 (1976), 91–92  mathnet (.: 6)  mathscinet (.: 12)  zmath; V. L. Popov, “Representations with a free module of covariants”, Funct. Anal. Appl., 10:3 (1976), 242–244  crossref  mathscinet  zmath  scopus (cited: 24)

   1975
120. . . , “ ܧݧѧڧڧܧѧڧ ֧էѧӧݧ֧ߧڧ, ڧܧݧڧ֧ݧߧ ާݧ ԧ٧”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 9:4 (1975), 83–84  mathnet (.: 2)  mathscinet (.: 1)  zmath; V. L. Popov, “The classification of representations which are exceptional in the sense of Igusa”, Funct. Anal. Appl., 9:4 (1975), 348–350  crossref  mathscinet  zmath  scopus (cited: 3)
121. . . , “ݧѧڧڧܧѧڧ ֧ާ֧ߧ ѧڧߧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ާߧԧҧѧ٧ڧ, ܧӧѧ٧ڧէߧէߧ ߧڧ֧ݧߧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ”, ٧. iii. i֧. ާѧ֧., 39:3 (1975), 566–609  mathnet (.: 6)  mathscinet (.: 5)  zmath; V. L. Popov, “Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group”, Math. USSR-Izv., 9:3 (1975), 535–576  crossref  mathscinet  zmath

   1974
122. . . , “ ڧܧѧ էߧէߧ ѧߧ ݧڧߧ֧ۧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ԧ  էߧާ֧ߧ էߧէߧ ӧ֧ܧߧ ѧݧ֧ߧڧ”, ٧. iii. i֧. ާѧ֧., 38:2 (1974), 294–322  mathnet (.: 37)  mathscinet (.: 42)  zmath; V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327  crossref  mathscinet  zmath
123. . . , “iܧ ٧ѧާܧѧߧڧ ҧڧ ѧߧӧѧ ܧߧ֧ߧާ֧ߧ ݧڧߧ֧ۧߧ ֧էѧӧݧ֧ߧڧ ԧ SL(2)”, ѧ֧. ٧ѧާ֧ܧ, 16:6 (1974), 943–950  mathnet (.: 3)  mathscinet (.: 3)  zmath; V. L. Popov, “Structure of the closure of orbits in spaces of finite-dimensional linear SL(2) representations”, Math. Notes, 16:6 (1974), 1159–1162  crossref  mathscinet  zmath  scopus (cited: 1)

   1973
124. . . , “ݧѧڧڧܧѧڧ ѧڧߧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ӧ֧ߧ֧, ܧӧѧ٧ڧէߧէߧ ߧڧ֧ݧߧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ”, ٧. iii. i֧. ާѧ֧., 37:5 (1973), 1038–1055  mathnet (.: 5)  mathscinet (.: 3)  zmath; V. L. Popov, “Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 7:5 (1973), 1039–1056  crossref  mathscinet  zmath
125. . . , “ӧѧ٧ڧէߧէߧ ѧڧߧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ާߧԧҧѧ٧ڧ ԧ SL(2)”, ٧. iii. i֧. ާѧ֧., 37:4 (1973), 792–832  mathnet (.: 18)  mathscinet (.: 7)  zmath; V. L. Popov, “Quasihomogeneous affine algebraic varieties of the group SL(2)”, Math. USSR-Izv., 7:4 (1973), 793–831  crossref  mathscinet  zmath

   1972
126. . . ڧߧҧ֧, . . , “ էߧ ܧݧѧ ܧӧѧ٧ڧէߧէߧ ѧڧߧߧ ާߧԧҧѧ٧ڧ”, ٧. iii. i֧. ާѧ֧., 36:4 (1972), 749–764  mathnet (.: 50)  mathscinet (.: 28)  zmath; È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758  crossref  mathscinet  zmath
127. . . , “ ѧҧڧݧߧ է֧ۧӧڧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ ߧ ѧݧԧ֧ҧѧڧ֧ܧ ާߧԧҧѧ٧ڧ”, ٧. iii. i֧. ާѧ֧., 36:2 (1972), 371–385  mathnet (.: 11)  mathscinet (.: 12)  zmath; V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379  crossref  mathscinet  zmath
128. . . , “ ڧܧѧ էߧէߧ ѧߧ ݧڧߧ֧ۧߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ԧ էߧާ֧ߧ էߧէߧ ӧ֧ܧߧ ѧݧ֧ߧڧ”, , XXVII:4 (1972), 191–192  mathnet (.: 1)

   1971
129. . . ߧէ֧֧, . . , “ ѧڧߧѧߧ էԧѧ ֧ ҧ֧ԧ ݧا֧ߧڧ ѧߧӧ ֧էѧӧݧ֧ߧڧ ݧ ԧ ”, ߧܧ. ѧߧѧݧڧ ֧ԧ ڧ., 5:4 (1971), 1–8  mathnet (.: 6)  mathscinet (.: 6)  zmath; E. M. Andreev, V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group”, Funct. Anal. Appl., 5:4 (1971), 265–271  crossref  mathscinet  zmath  scopus (cited: 12)
130. . . , “֧ԧݧߧ է֧ۧӧڧ ݧ ѧݧԧ֧ҧѧڧ֧ܧ ԧ ߧ ѧڧߧߧ ѧܧڧѧݧߧ ѧݧԧ֧ҧ”, ֧٧ߧ ѧݧԧ֧ҧѧڧ֧ܧڧ ܧݧݧܧӧڧ. ֧٧ާ ҧ֧ߧڧ էܧݧѧէ (ڧڧߧ֧), ߧڧ ާѧ֧ާѧڧܧ ii, 1971, 75

   1970
131. . . , “ڧ֧ڧ ѧҧڧݧߧ է֧ۧӧڧ ݧ ԧ ߧ ѧܧڧѧݧߧ ާߧԧҧѧ٧ڧ”, ٧. iii. i֧. ާѧ֧., 34:3 (1970), 523–531  mathnet (.: 21)  mathscinet (.: 17)  zmath; V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535  crossref  mathscinet  zmath

Math-Net.Ru
1. Affine algebraic groups and Cremona groups
V. L. Popov
International conference "Affine Algebraic Groups, Motives, and Cohomological Invariants", September 16-21, 2018, Banff International Research Station for Mathematical Innovation and Discovery (BIRS), Canada
19 2018 . 09:00   
2. Cremona groups vs. algebraic groups
V. L. Popov
International conference Algebraic Geometry — Mariusz Koras in memoriam, May 28–June 1, 2018, Institute of Mathematics of the Polish Academy of Sciences, Warsaw, Poland
28 2018 . 10:40   
3. Variations on the theme of Zariski's Cancellation Problem
V. L. Popov
International conference Polynomial Rings and Affine Algebraic Geometry (PRAAG-2018), February 12--16, 2018, Tokyo Metropolitan University, Tokyo, Japan
14 2018 . 11:50
4. , . 3
. . 
VI -
26 2017 . 09:00
5. , . 2
. . 
VI -
25 2017 . 15:35
6. , . 1
. . 
VI -
25 2017 . 14:30
7. ?
. . 
«, »,
5 2017 . 14:30   
8.
. . 
( . . )
11 2016 . 15:00
9. Around the Bass' Triangulability Problem
V. L. Popov
International Cremona Conference, September 5--16, 2016, Basel, Switzerland
14 2016 . 10:30
10.
. . 
,
7 2016 . 12:00
11. Coordinate algebras of connected affine algebraic groups: generators and relations
V. L. Popov
International Workshop "Hopf Algebras, Algebraic Groups and Related Structures", June 13-17, 2016, Memorial University of Newfoundland, St John's, NL, Canada
14 2016 . 15:00
12. On the equations defining affine algebraic groups
V. L. Popov
- , ,
14 2016 . 12:10   
13. ,
. . 
. . . , , -
24 2015 . 11:00
14. Simple algebras and algebraic groups
V. L. Popov
International conference «The Use of Linear Algebraic Groups in Geometry and Number Theory» September 13-18, 2015, Banff, Canada
16 2015 . 13:30   
15. Bass' problem on triangulable subgroups of the Cremona group
V. L. Popov
International conference "Local arithmetic geometry", May 18–22, 2015, Euler International Mathematical Institute, St. Petersburg, Russia
22 2015 . 10:00
16.
. . 
. . . , , -
21 2015 . 18:00   
17. Algebraic subgroups of the Cremona groups
V. L. Popov
International Scientific Session "Algebraic Geometry, Warsaw 1960-2015", on the occasion of awarding the honorary doctorate of the University of Warsaw to Professor Andrzej Szczepan Bialynicki-Birula, March 19-20, 2015, Warshaw, Poland
20 2015 . 15:00
18.
. . 
" (1928 - 2014) XX "
19 2015 . 18:30
19.
. . 
- . . . 
18 2014 . 14:00   
20.
. . 

17 2014 . 17:00
21.
. . 
( . . )
18 2014 . 15:00
22. Orbit closures of algebraic group actions
V. L. Popov
International conference "Geometry, Topology and Integrability", October 20-25, 2014, Skolkovo Institute of Science and Technology, Moscow
23 2014 . 12:50
23. Orbit closures
V. L. Popov
International conference "Geometric Complexity Theory", September 15-20, 2014, Simons Institute for Theoretical Computing, Berkeley, University of California, USA
16 2014 . 09:00   
24. Infinite dimensional automorphism groups of algebraic varieties, multiple transitivity, and unirationality
V. L. Popov
Workshop ``Frontiers of rationality'', July 14--18, 2014, The University Centre in Svalbard, Longyearbyen (Spitsbergen), Norway
17 2014 . 14:00
25. Finite group actions on algebraic varieties: a “social” approach
V. L. Popov
Kyoto Workshop on Algebraic Varieties and Automorphism Groups, July 7--11, 2014, Research Institute for Mathematical Sciences, Kyoto University, Japan
10 2014 . 10:00
26.
. . 
« » . .. 
27 2014 . 16:00   
27. Quotients by conjugation action, cross-sections, singularities, and representation rings
V. L. Popov
Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras, The Mathematisches Forschungsinstitut Oberwolfach, 19–25 Jan 2014, Germany
20 2014 . 15:00
28. ,  ,  $\mathrm{Cr}_n$
. . 
, 2013 
20 2013 . 10:20   
29.
. . 
( . . )
10 2013 . 15:00
30.
. . 
, 90-
5 2013 . 14:30   
31. Algebraic groups and the Cremona group
V. L. Popov
Algebraic Groups, The Mathematisches Forschungsinstitut Oberwolfach, Germany
9 2013 . 10:20
32. Orbit closures
V. L. Popov
Research Workshop of Israel Science Foundation on Orbits, Primitive Ideals and Quantum Groups, The Weitsmann institute of Science, The University of Haifa, Israel
6 2013 . 11:30
33. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture
V. L. Popov
«Algebraic Groups and Representation Theory», conference in memory of Tonny A. Springer, Hong Kong
4 2013 . 15:10
34.
. . 
, . . 
27 2012 . 12:30   
35. Simple algebras and the analogue of classical invariant theory for nonclassical groups
V. L. Popov
«Arithmetic as Geometry: Parshin Fest»
29 2012 . 15:00   
36. Jordan groups and automorphism groups of algebraic varieties
V. L. Popov
International conference "Groups of Automorphisms in Birational and Affine Geometry", Levico Terme (Trento), Italy
2 2012 .
37. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov Conjecture
V. L. Popov
International conference "Lie Algebras, Torsors and Cohomological Invariants", Banff, Canada
2 2012 .   
38. 170 years of invariant theory
V. L. Popov
Colloquium Talk at the Pennsylvania State University, USA,
27 2012 .
39. Coordinate algebras of algebraic groups: generators and relations
V. L. Popov
Algebra & Number Theory Seminar of the Pennsylvania State University, USA
27 2012 .
40. Rational functions on semisimple Lie algebras and the Gelfand–Kirillov Conjecture
V. L. Popov
GAP Seminar of the Pennsylvania State University, USA
25 2012 .
41. Tori in Cremona groups
V. L. Popov
International conference "Essential Dimension and Cremona Groups", Chern Institute of Mathematics, Nankai University, Tianjin, China
12 2012 .
42. 170 years of invariant theory
. . 
Colloquium talk at the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
8 2012 . 16:30
43. Rational actions on affine spaces
V. L. Popov
«Birational and affine geometry»
23 2012 . 11:00   
44.

( . . )
3 2012 . 15:00
45.
. . 
« », 100- . . 
27 2011 . 11:20
46. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
Colloque International, Journées Solstice d'été 2011, Institut de Mathématiques de Jussieu, Université Paris-7 Denis Diderot, Paris
23 2011 . 09:00
47. Discrete groups generated by complex reflections
V. L. Popov
«, , », 120- (1890–1980)
17 2010 . 14:00
48. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
International Algebraic Conference dedicated to the 70th birthday of Anatoly Yakovlev, June 19–24, 2010, St. Petersburg, Russia
19 2010 . 09:30
49. Cayley groups
V. L. Popov
International Workshop Non-Archimedean Analysis, Lie Groups and Dynamical Systems February 8-12, 2010, Paderborn, Germany
8 2010 . 14:50
50. Cross-sections, quotients, and representation rings of semisimple algebraic groups
V. L. Popov
International Workshop Linear Algebraic Groups and Related Structures, Banff International Research Station for Mathematical Innovation and Discovery, Banff, Canada
16 2009 . 09:50
51. Cross-sections and quotients for the actions of semisimple algebraic groups
V. L. Popov
« »,
30 2009 . 10:00   
52. Two orbits: when is one in the closure of the other?
V. L. Popov
International conference Affine Algebraic Geometry in honour of Peter Russell, McGill University, Montreal, Canada
5 2009 . 15:00
53.
. . 
- ,
11 2009 .
54. :   ?
. . 

28 2009 . 15:00
55.   ?
. . 
- – « »
24 2008 . 12:15   
56. Describing the Hilbert cone of unstable points
V. L. Popov
International Conference Geometric Invariant Theory, Mathematisches Institut Georg-August-Universitat Gottingen, Gottingen, Germany
2 2008 . 09:30
57. Tensor product decompositions and open orbits in multiple flag varieties
V. L. Popov
International Conference Lie Theory and Geometry. The Mathematical Legacy of Bertram Kostant, University of British Columbia, Vancouver, Canada
23 2008 . 14:30
58.
. . 
« » . .. 
28 2008 . 16:00   
59.
. . 

29 2008 . 15:00
60. One and a half centuries of Invariant Theory
V. L. Popov
The 2007 Collingwood Lecture, Durham University, Great Britain
23 2007 . 13:15
61. Finite linear groups, lattices, and products of elliptic curves
V. L. Popov
, 100- . . 
25 2007 . 11:00
62.
. . 
, 80- . . ,
22 2007 .
63. ,
. . 

27 2007 . 15:00
64. Generically transitive algebraic group actions, open orbits in multiple flag varieties, and tensor product decompositions
. . 

23 2007 . 15:00
65. Quasihomogeneous affine threefolds
V. L. Popov
International Conference Affine Algebraic Geometry, Oberwolfach, Germany
7 2007 .
66. Generically multiple transitive algebraic group actions
V. L. Popov
International conference Algebraic Geometry: Warsaw 1960-2005, Bedlęwo, Poland
8 2006 .
67. Finite linear groups, lattices, and products of elliptic curves
V. L. Popov
International Workshop Algebra and Geometry on the occasion of Norbert A'Campo's 65th anniversary, ETH Zurich, Switzerland
18 2006 .
68. 13-
. . 
-
18 2006 .
69. , ( . . )
. . 

4 2006 .
70. Projective self-dual algebraic varieties and nilpotent orbits
V. L. Popov
Buenos Aires Satellite Conference of the Lat Am Algebra Colloquium, BASCOLA, University of Buenos Aires
10 2005 . 11:00
71. Finite dimensional simple algebras and the analogue of classicalinvariant theory for nonclassical groups
V. L. Popov
XVI Latin American Algebra Colloquium, Coloniadel Sacramento, Uruguay
7 2005 .
72.
. . 

12 2005 .
73.
. . 

18 2005 .
74. Polynomial automorphisms
V. L. Popov
The University of British Columbia, Mathematics Department
24 2004 . 15:00
75. 150 years of Invariant Theory
V. L. Popov
Red Raider Symposium 2004: Invariant Theory in Perspective Texas Technical University, Lubbock TX, USA
11 2004 . 10:00
76. Cayley groups
V. L. Popov
International Conference Arithmetic Geometry, St. Petersburg
26 2004 .
77.
. . 

5 2004 . 16:20
78. Cayley groups
V. L. Popov
International Conference Commutative Algebra and Algebraic Geometry in honor of Professor Miyanishi, Osaka University, Japan
1 2004 .
79. Cayley maps for algebraic groups
V. L. Popov
International Colloquium Algebraic Groups and Homogeneous Spaces, Bombay, India
6 2004 .
80. Finite dimensional simple algebras and the analogue of classical invariant theory for nonclassical groups
V. L. Popov
International workshop on Invariant Theory, Queen's University, Kingston, ON, Canada
8 2002 .
81. Homogeneous spaces and the problems of groups actions and algebraic geometry
V. L. Popov
International Workshop Group Actions on Rational Varieties CRM, Montreal, Canada
27 2002 . 09:00
82. Hilbert 13th problem and algebraic groups
. . 

4 2000 .
83. Algebraic group actions and rational singularities
V. L. Popov
International Workshop "Trends in Commutative Algebra", Indian Institute of Technology, Bombay, January 13–15, 2000
14 2000 . 09:00
84. Modern developments in invariant theory
V. L. Popov
International Workshop "Trends in Commutative Algebra", Indian Institute of Technology, Bombay, January 13–15, 2000
13 2000 . 10:00
85. Algebraic groups of automorphisms of polynomial rings
V. L. Popov
Théorie des Groupes', Colloque International, Journées Solstice d'été 1999
8 1999 . 15:15
86. Reductive subgroups of ${\mathrm Aut}{\mathbf A}^3$ and ${\mathrm Aut}{\mathbf A}^4$
V. L. Popov
Algebraische Gruppen, Mathematisches Forschungsinstitut Oberwolfach, Germany, 05-11 April,1998
7 1998 . 11:00
87. Orbits of parabolic subgroup acting on its unipotent radical
V. L. Popov
Einhüllende Algebren und Darstellungstheorie, Mathematisches Forschungsinstitut Oberwolfach, Germany, 02.11–08.11.1997
4 1997 . 10:00
88. Kostant sections
V. L. Popov
Colloque International "Groupes et Algèbres" Journées Solstice d'été, Institut de Mathématiques de Jussieu, Université Paris-7 Denis Diderot, Paris
23 1995 .

 
:
      © . . . , 2018