Видеотека
 RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
 Видеотека Архив Популярное видео Поиск RSS Новые поступления

Workshop on Proof Theory, Modal Logic and Reflection Principles
17 октября 2017 г. 12:50–13:25, Москва, Математический институт им. В.А. Стеклова РАН

Caristi's fixed point theorem, non-monotone inductive definitions, and relativized leftmost paths

D. Fernández-Duque
 Видеозаписи: MP4 904.1 Mb MP4 247.7 Mb

 Количество просмотров: Эта страница: 93 Видеофайлы: 27

 Видео не загружается в Ваш браузер: Активируйте JavaScript в Вашем браузере Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080 Сообщите администратору портала о данной ошибке

Аннотация: This is joint work with Paul Shafer, Henry Towsner and Keita Yokoyama.
A Caristi system is a triple $(X,f,V)$, where $X$ is a complete metric space, $V$ is a lower semi-continuous function from $X$ to the positive reals, and $f: X\to X$ is an arbitrary function such that $d(x,f(x))\leqslant V(x) - V(f(x))$ always holds.
Caristi's fixed point theorem states that any Caristi system has a fixed point. This has been proven in the literature using the Ekeland variational principle, and using Caristi sequences, which are transfinite iterations of $f$.
We analyze Caristi's theorem and its known proofs in the context of reverse mathematics, where metric spaces are assumed separable and coded in the standard way. Among the results obtained, we have that, over $\mathrm{RCA}_0$:
• $\mathrm{WKL}_0$ is equivalent to Caristi's theorem restricted to compact spaces with continuous $V$.
• $\mathrm{ACA}_0$ is equivalent to Caristi's theorem restricted to compact spaces with lower semi-continuous $V$.
• Towsner's relativized leftmost path principle is equivalent to Caristi's theorem for Baire or Borel $f$.
• The arithmetical inflationary fixed point scheme is equivalent to the statement that if f is arithmetically defined, any point of $X$ can be included in a Caristi sequence containing a fixed point of $f$.
These theories are all defined over the language of second-order arithmetic and we mention them in strictly increasing order of strength.

Язык доклада: английский

 ОТПРАВИТЬ:
 Обратная связь: math-net2021_11 [at] mi-ras ru Пользовательское соглашение Регистрация посетителей портала Логотипы © Математический институт им. В. А. Стеклова РАН, 2021