RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Conference in honour of Fedor Bogomolov's 65th birthday
September 4, 2011 14:30, Moscow
 


Rings and varieties

Miles Reid

University of Warwick
Video records:
Flash Video 2,483.2 Mb
Flash Video 408.3 Mb
MP4 408.3 Mb

Number of views:
This page:508
Video files:170

Miles Reid


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension $\le 3$, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension $\ge 4$. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin-Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of $Q$-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
For introductory tutorial material, see my website + surfaces + Graded rings and the associated homework.
For applications of Gorenstein unprojection, see “Graded rings and birational geometry” on my website + 3-folds, or the more recent paper.
Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry (unprojection constructions of $Q$-Fano 3-folds), Composition to appear, arXiv:1009.4313.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018