Video Library
Most viewed videos

New in collection

You may need the following programs to see the files

Conference in honour of Fedor Bogomolov's 65th birthday
September 4, 2011 14:30, Moscow

Rings and varieties

Miles Reid

University of Warwick
Video records:
Flash Video 2,483.2 Mb
Flash Video 408.3 Mb
MP4 408.3 Mb

Number of views:
This page:478
Video files:165

Miles Reid

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension $\le 3$, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension $\ge 4$. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin-Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of $Q$-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
For introductory tutorial material, see my website + surfaces + Graded rings and the associated homework.
For applications of Gorenstein unprojection, see “Graded rings and birational geometry” on my website + 3-folds, or the more recent paper.
Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry (unprojection constructions of $Q$-Fano 3-folds), Composition to appear, arXiv:1009.4313.

Language: English

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018