RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 30, 2015 16:00, Moscow, Steklov Mathematical Institute of the Russian Academy of Sciences
 


A joint discrete universality of Dirichlet $L$-functions

A. Laurinčikas

Vilnius university, Department of Mathematics and Informatics, Vilnius
Video records:
Flash Video 160.8 Mb
Flash Video 963.4 Mb
MP4 160.8 Mb

Number of views:
This page:107
Video files:43

A. Laurinčikas


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: In 1975, S.M.Voronin, a student of professor A.A. Karatsuba, discovered a universality and joint universality of Dirichlet $L$-functions $L(s, \chi)$. Roughly speaking, the last means that a tuple of analytical functions can be approximated simultaneously by shifts $L(s+i\tau, \chi_1), ..., L(s+i\tau, \chi_r)$, $\tau\in {R}$. In 1981, B. Bagchi studied an approximation of a tuple of analytic functions by discrete shifts $L(s+ikh, \chi_1), ..., L(s+ikh, \chi_r)$, $k\in {N}_0=N\cup \{0\}$ with fixed $h>0$. In the talk, we consider a generalization of Bagchi's theorem on an approximation of analytical functions by discrete shifts $L(s+ikh_1, \chi_1), ..., L(s+ikh_r, \chi_r)$, $k\in {N}_0$, with fixed $h_1>0, ..., h_r>0$. Here the linear independence of the set
$$ \{( h_1\log p: p\in {\cal P}) ..., ( h_r\log p: p\in {\cal P}); \pi\}, $$
over the field of all rational numbers is needed (here $\cal P$ stands for the set of all prime numbers).

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017