RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 30, 2015 15:00, Moscow, Steklov Mathematical Institute of the Russian Academy of Sciences
 


On some Diophantine spectra

N. G. Moshchevitin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
Flash Video 138.5 Mb
Flash Video 829.7 Mb
MP4 138.5 Mb

Number of views:
This page:217
Video files:122

N. G. Moshchevitin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $\alpha$ be an irrational number, and let
$$ \psi_\alpha(t)=\min_{\mathbb{Z}_+\ni q\le t}\|q\alpha\| $$
be the function of measure of its irrationality. In the talk, we discuss some old and new results concerning Lagrange spectrum
$$ \mathbb{L}=\{\lambda\in\mathbb{R}:\exists \alpha\in\mathbb{R}\setminus\mathbb{Q} \liminf_{t\to\infty}t\psi_\alpha(t)=\lambda\}, $$
Dirchlet spectrum
$$ \mathbb{D} = \{ d\in \mathbb{R}:   \exists \alpha \in \mathbb{R}\setminus\mathbb{Q}    \limsup_{t\to \infty} t\psi_\alpha (t) = d\}, $$
and the spectrum
$$ \mathbb{M}=\{m\in\mathbb{R}:\exists \alpha\in\mathbb{R}\setminus\mathbb{Q} \limsup_{t\to\infty}t\mu_\alpha(t)=m\}, $$
connected with the function $\mu_\alpha(t)$, arising in the analysis of Minkowski diagonal fraction.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017