RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Categorical and analytic invariants in Algebraic geometry 1
September 17, 2015 16:30, Moscow, Steklov Mathematical Institute
 


Joins and Hadamard products

S. Galkin
Video records:
MP4 1,972.9 Mb
MP4 500.4 Mb

Number of views:
This page:178
Video files:110

S. Galkin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: I will discuss a procedure of creating new deformation classes of projective varieties by smoothing a join of two known ones. This way starting from two elliptic curves one can obtain various interesting Calabi–Yau threefolds, some are non-simply-connected. Also this explains that Calabi–Yau threefolds of degree $25$, obtained as intersection of two Grassmannians in $\mathbb P^9$, are in fact linear sections of a smooth Fano sixfold. In a sense, this procedure is a generalization of complete intersection for non-hypersurface case. I will explain why quantum periods of such new Calabi–Yau varieties are Hadamard products of the quantum periods of original pieces. Also if the original varieties had mirror-dual functions $f(x)$ and $g(y)$, then a smoothing of a join will have mirror-dual function given by exterior product $f(x) g(y)$.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017