RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






The third Russian-Chinese conference on complex analysis, algebra, algebraic geometry and mathematical physics
May 12, 2016 13:10–13:40, Moscow, Steklov Mathematical Institute of RAS, Gubkina, 8
 


McMullen's formula and a multidimensional analog of the Weierstrass $\zeta$-function

A. V. Shchuplev

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Video records:
Flash Video 173.9 Mb
Flash Video 1,036.5 Mb
MP4 173.9 Mb

Number of views:
This page:119
Video files:40

A. V. Shchuplev
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: In 1899 G. Pick found a simple formula relating the area $\mathrm{Area}(P)$ of a plane polygon $P$ with vertices in integer points with the number $I$ of its interior points and on its boundary $B$:
$$ \mathrm{Area}(P)=I+\frac{B}{2}-1. $$
However, this formula can not be simply extended even to three-dimensional case as Reeve's example demonstrates.Instead of one simple formula there exist several formulas, obtained by combinatorial or number-theoretical methods, or by methods of algebraic geometry. One such formula due to P.McMullen says that for an integer polyhedron with centrally-symmetric facets its volume is equal to the sum of all solid angles at each its integer point of the polyhedron.
A multidimensional analog of the Weierstrass $\zeta$-function
$$ \zeta(z)=\eta(z)+\sum_{\gamma\in{\mathbb Z^{2n}\smallsetminus \{0\}}}(\eta(z-\gamma)+\eta(\gamma)+\sum_{i=1}^{n}(\frac{\partial\eta}{\partial z_{i}}(\gamma)z_{i}+\frac{\partial\eta}{\partial\bar{z}_{i}}(\gamma)\bar{z}_{i})), $$
where $\eta(z)$ is the Bochner-Martinelli differential form allows to prove this statement analytically.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018