RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Algebraic Groups and Lie Groups" on the occasion of the 70th birthday of Vladimir L. Popov
October 4, 2016 11:40–12:30, Moscow, Steklov Mathematical Institute, room 530 (Gubkina 8)
 


Word maps of simple algebraic groups

Nikolai Gordeev
Video records:
Flash Video 304.9 Mb
Flash Video 1,827.0 Mb
MP4 304.9 Mb

Number of views:
This page:104
Video files:35

Nikolai Gordeev


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $F_m$ be the free group of rank $m$. Then for any word ${w=w(x_1,…,x_m)\in F_m}$ and for any group $G$ one can define the word map $\tilde{w}\colon G^m\rightarrow G$ by the formula: $\tilde{w}((g_1, \ldots, g_m)) := w(g_1, \ldots, g_m)$. Word maps have been intensely studied over at least two past decades in various contexts. In this talk we deal with the case where $G=\mathcal G(K)$ is the group of $K$-points of a simple linear algebraic group $\mathcal G$ defined over a field $K$. Here we consider the problem of surjectivity of word maps and also some related questions.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019