RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Matsbornik-150: algebra, geometry, analysis
November 9, 2016 10:00, Moscow, Steklov Mathematical Institute, Conference hall, 9th floor
 


Following in the footsteps of Selberg: an analogue of the Riemann hypothesis, a density theorem and a disrtibution law for the values of $L$-functions (and their linear combinations) on the critical line

I. S. Rezvyakova
Video records:
MP4 1,710.2 Mb
MP4 433.9 Mb

Number of views:
This page:234
Video files:57

I. S. Rezvyakova
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: In 1989, Atle Selberg introduced a class of $L$-series which are supposed to satisfy an analogue of the Riemann hypothesis. In our talk we shall speak about the following results proven for certain functions from the Selberg class:
  • a positive proportion of non-trivial zeros of $L$-function lie on the critical line;
  • almost all non-trivial zeros of $L$-function lie in a vicinity of the critical line;
  • logarithm of $L$-function on the critical line is asymptotically normally distributed.
It turns out that in a certain sense all these results are equivalent and their core is a solution of the additive problem with the coefficients of the corresponding Dirichlet $L$-series.
We shall also talk about zeros of linear combinations of $L$-functions from the Selberg class and about a distribution of the values of such linear combinations on the critical line.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018