RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






L-Functions and Algebraic Varieties. A conference in memory of Alexey Zykin
February 8, 2018 11:00, Moscow, Moscow Independent University, 11 Bolshoi Vlassievsky per.
 


Adelic quotient groups on arithmetic surfaces

D. V. Osipov
Video records:
MP4 2,472.8 Mb
MP4 562.3 Mb

Number of views:
This page:95
Video files:13

D. V. Osipov


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: On an arithmetic surface there is group of Parshin-Beilinson adeles and natural subgroups of this group similar to the group of usual adeles on a number field and a subgroup which is the additive group of this field. But the group of Parshin-Beilinson adeles does not take into account the fibre of the arithmetic surface over the infinite point of the base, and therefore the Parshin-Beilinson adelic quotient group is not compact as it is in the case of a number field. I will talk on extension of Parshin-Beilinson adelig group on arithmetic surface and corresponding natural subgroups when the fibre over the infinite point of the base is taken into account, and such that the correpsonding quotient group is compact. I will discuss also an analogy with a projective algebraic surface fibered over a projective curve and defined over a finite field.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018