RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Conference «Contemporary Mathematics and its applications» dedicated to the results of research supported by the Russian Science Foundation grant 14-50-00005
November 19, 2018 12:10–12:30, Direction "Real and complex analysis and its applications", Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


On recovery of sparse vectors from linear measurements

S. V. Konyagin
Video records:
MP4 544.8 Mb
MP4 247.3 Mb

Number of views:
This page:97
Video files:33

S. V. Konyagin
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $1\le 2l\le m<d$. We say that a vector $x\in\mathbb{R}^d$ is $l$-sparse if it has at most $l$ nonzero coordinates. Let $A$ be a given $m\times d$ matrix. We consider the problem of recovery of an $l$-sparse vector $x\in\mathbb{R}^d$ from the vector $y=A x\in\mathbb{R}^m$. The problem of an effective recovery of $x$ from $y$ attracts a big interest of leading specialists. We will mention a connection of this problem with estimation of the number of solutions of equations with reciprocals. The main part of the talk will be devoted to possibility of recovery of integer vectors. In the case $m=2l$ we find necessary conditions and sufficient conditions on numbers $m,d,k$ for the existence of an integer matrix $A$ with the absolute values of all elements not exceeding $k$ that allows to reconstruct $l$-sparse vectors in $\mathbb{Z}^d$. For fixed $m$ these conditions on $d$ differ only by a logarithmic factor depending on $k$.

Related articles:

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019