RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Conference on Complex Analysis and Mathematical Physics, dedicated to the 70th birthday of A. G. Sergeev
March 18, 2019 16:50–17:20, Moscow, Steklov Mathematical Institute, Gubkina St., 8
 


Nuttall's decomposition of a three-sheeted Riemann surface of genus one

Semen Nasyrov

Kazan Federal University
Video records:
MP4 869.8 Mb
MP4 869.8 Mb

Number of views:
This page:121
Video files:31

Semen Nasyrov
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: We investigate the structure of a decomposition of the Riemann surface $\mathfrak{R}$ of the function $\sqrt[3]{(z-a)(z-b)(z-c)}$ into $3$ sheets. The decomposition is specified by an Abelian integral with logarithmic singularities over the infinite points of $\mathfrak{R}$. In the case, when the triangle with vertices $a$, $b$, and $c$ is close to a regular one, the problem was studied by A. I. Aptekarev and D. N. Tulyakov. We consider the general case. The main attention is paid to investigation of the problem, if the critical points of the Abelian differential lie on the borders of the sheets.
The work is financially supported by the RFBR, grant No 18-41-160003.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020