Video Library
Most viewed videos

New in collection

You may need the following programs to see the files

The 27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
August 12, 2019 14:30–15:30, Section II, Krasnoyarsk, Siberian Federal University

Reconstruction of the values of an algebraic function via the system of Hermite-Padé polynomials

A. V. Komlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
MP4 2,041.9 Mb
MP4 1,825.9 Mb

Number of views:
This page:46
Video files:21

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: In the talk we suggest a method of reconstruction of the values of an algebraic function from its initial germ on all sheets of its Riemann surface, except for the “last” (see below), with the help of systems of linear algebraic equations. More precisely, for a given germ $f_0$ of an algebraic function $f$ of order $(m + 1)$, for each natural number $n$ we define a system of $m$ tuples of polynomials. These tuples are numbered by the number $k = 1, ..., m$, and we call them "$k$-th polynomials of Hermite-Padé $m$-system (of order $n$)". All these polynomials are found constructively, as solutions of linear homogeneous systems, and coefficients of these systems are some linear combinations of the Taylor coefficients of the original germ $f_0$. It turns out that the ratio of some polynomials from the $k$-th set assymptotically (as $n\to\infty$) reconstructs the sum of the values of the original function $f$ on the first $k$ sheets of the so-called Nuttall partition of Riemann surface of $f$ into sheets. We note that $1$-th polynomials of Hermite-Padé $m$-system are well-known Hermite–Padé polynomials of the second type and $m$-th polynomials of Hermite-Padé $m$-system are well-known Hermite–Padé polynomials of the first type.

Language: English

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020