RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Central and invariant measures and applications
August 18, 2020 16:00–16:40, St. Petersburg, online
 


Poisson limit of bumping routes in the Robinson–Schensted correspondence

P. Sniady
Video records:
MP4 394.6 Mb

Number of views:
This page:23
Video files:2

P. Sniady


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Joint work with Dan Romik, Łukasz Maślanka, Mikołaj Marciniak.
We are interested in asymptotic questions related to Robinson–Schensted–Knuth algorithm applied to a random input and Plancherel measure on the set of infinite standard Young tableaux. One of such questions concerns the shape of the bumping route when a specified number is inserted into a large (or infinite) Plancherel-distributed tableau; somewhat surprisingly this problem turns out to be equivalent to the question (stated by Vershik in 2020) about the time-evolution of the position of a specified number in the insertion tableau as more and more numbers are inserted.
We focus on the direct vicinity of the $y$-axis, for example we are interested in the time it takes for the bumping route / box to reach the first column of the tableau. Asymptotically, the trajectory turns out to converge in distribution to an explicit random process.
Further reading: https://arxiv.org/abs/2005.14397

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020