Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Geometric structures on complex manifolds
October 5, 2011 12:40, Moscow
 


Locally conformally Kaehler structures on homogeneous spaces

Keizo Hasegawa

Niigata University
Video records:
Flash Video 258.8 Mb
Flash Video 1,573.3 Mb
MP4 258.8 Mb

Number of views:
This page:363
Video files:90

Keizo Hasegawa


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Abstract: A homogeneous Hermitian manifold $M$ with its homogeneous Hermitian structure $h$, defining a locally conformally Kaehler structure $w$ is called a homogeneous locally conformally Kaehler or shortly a homogeneous l.c.K. manifold. If a simply connected homogeneous l.c.K. manifold $M=G/H$, where $G$ is a connected Lie group and $H$ a closed subgroup of $G$, admits a free action of a discrete subgroup $D$ of $G$ from the left, then a double coset space $D\setminus G/H$ is called a locally homogeneous l.c.K. manifold. We discuss explicitly homogeneous and locally homogeneous l.c.K. structures on Hopf surfaces and Inoue surfaces, and their deformations. We also classify all complex surfaces admitting locally homogeneous l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
This talk is based on a joint work with Y. Kamishima “Locally conformally Kaehler structures on homogeneous spaces” (arXiv:1101.3693).

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021