Videolibrary Video Library Archive Most viewed videos Search RSS New in collection

International conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone (1890–1980)
August 17, 2010 09:00, Moscow  Extremal problems for convex lattice polytopes

Imre Barany
 Video records: Windows Media 275.3 Mb Flash Video 579.2 Mb MP4 579.2 Mb

 Number of views: This page: 285 Video files: 117   Видео не загружается в Ваш браузер: Активируйте JavaScript в Вашем браузере Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080 Сообщите администратору портала о данной ошибке

Abstract: In this survey talk I will present several extremal problems, and some solutions, concerning convex lattice polytopes. A polytope is called a lattice polytope if all of its vertices belong to the integer lattice $\mathbb Z^d$. Let $\mathcal P(n,d)$ denote the family of all convex lattice polytopes, of positive volume, in $\mathbb R^d$ with $n$ vertices. The following extremal problems will be considered.
• 1. minimal volume for $P\in\mathcal P(n,d)$,
• 2. minimal surface area for $P\in\mathcal P(n,d)$,
• 3. minimal lattice width for $P\in\mathcal P(n,d)$,
• 4. maximal $n$ such that a (large) convex set $K\subset\mathbb R^d$ contains and element of $\mathcal P(n,d)$, in other words, the maximal number of lattice points in $K$ that are in convex position.

These problems are related to a question of V. I. Arnold from 1980 asking for the number of (equivalence classes of) lattice polytopes of volume (at most) $V$ in $d$-dimensional space. Here two convex lattice polytopes are equivalent if one can be carried to the other by a lattice preserving affine transformation.

Language: English

 SHARE:       Contact us: math-net2021_06 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2021