RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






The eighth International сonference "Advances in Modal Logic" (AiML 2010)
August 24, 2010 12:20, Moscow
 


Complete axiomatization of the Stutter-invariant fragment of the linear time $\mu$-calculus

Amélie Gheerbrant
Video records:
Windows Media 223.8 Mb
Flash Video 374.6 Mb
MP4 374.6 Mb

Number of views:
This page:907
Video files:450

Amélie Gheerbrant


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: The logic $\mu\mathsf{TL}(\mathsf{U})$ is the fixpoint extension of the “Until”-only fragment of linear-time temporal logic. It also happens to be the stutterinvariant fragment of linear-time $\mu$-calculus $\mu\mathsf{TL}$. We provide complete axiomatizations of $\mu\mathsf{TL}(\mathsf{U})$ on the class of finite words and on the class of $\omega$-words. We introduce for this end another logic, which we call $\mu\mathsf{TL}(\diamondsuit_\Gamma)$, and which is a variation of $\mu\mathsf{TL}$ where the Next time operator is replaced by the family of its stutter-invariant counterparts. This logic has exactly the same expressive power as $\mu\mathsf{TL}(\mathsf{U})$. Using already known results for $\mu\mathsf{TL}$, we first prove completeness for $\mu\mathsf{TL}(\diamondsuit_\Gamma)$, which finally allows us to obtain completeness for $\mu\mathsf{TL}(\mathsf{U})$.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017