RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






The eighth International сonference "Advances in Modal Logic" (AiML 2010)
August 26, 2010 11:50, Moscow
 


Uniform interpolation for monotone modal logic

Santocanale Luigi, Yde Venema
Video records:
Windows Media 243.9 Mb
Flash Video 456.1 Mb
MP4 456.1 Mb

Number of views:
This page:293
Video files:113

Santocanale Luigi, Yde Venema


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: We reconstruct the syntax and semantics of monotone modal logic, in the style of Moss' coalgebraic logic. To that aim, we replace the box and diamond with a modality $\nabla$ which takes a finite collection of finite sets of formulas as its argument. The semantics of this modality in monotone neighborhood models is defined in terms of a version of relation lifting that is appropriate for this setting.
We prove that the standard modal language and our $\nabla$-based one are effectively equi-expressive, meaning that there are effective translations in both directions. We prove and discuss some algebraic laws that govern the interaction of $\nabla$ with the Boolean operations. These laws enable us to rewrite each formula into a special kind of disjunctive normal form that we call transparent. For such transparent formulas it is relatively easy to define the bisimulation quantifiers that one may associate with our notion of relation lifting. This allows us to prove the main result of the paper, viz., that monotone modal logic enjoys the property of uniform interpolation.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017