RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Birational and affine geometry"
April 23, 2012 10:00–10:50, Moscow, Steklov Mathematical Institute of RAS
 


Inoue surfaces and Inoue type manifolds

F. Catanese

Mathematisches Institut Lehrstuhl Mathematik VIII, Bayreuth
Video records:
Flash Video 403.0 Mb
Flash Video 2,450.7 Mb
MP4 403.0 Mb

Number of views:
This page:537
Video files:185

F. Catanese
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Among minimal surfaces of general type with $p_g = 0$, there is only one class with $K^2 = 7$, discovered by Inoue 18 years ago. In recent work with Ingrid Bauer, we showed that these surfaces form an irreducible connected component of the moduli space, and that weak rigidity holds for them. Weak rigidity for $X$ means, in its weaker form, that every other variety $Y$ homotopically equivalent to $X$ has the property that either $Y$ or the conjugate variety belongs to an irreducible family containing $X$. We show this result by giving a different description of Inoue surfaces. This description lends itself to generalizations, which I will discuss during the talk. We define an Inoue type manifold as an ample divisor in a product of manifolds in the following list: Abelian varieties and quotients of irreducible locally symmetric spaces (including curves). Under some further assumptions, we can show semirigidity and weak rigidity results for Inoue type manifolds.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019