RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Birational and affine geometry"
April 23, 2012 13:30–14:20, Moscow, Steklov Mathematical Institute of RAS
 


Noether's problem and unramified Brauer groups

M.-Ch. Kang

National Taiwan University
Video records:
Flash Video 2,177.1 Mb
Flash Video 358.1 Mb
MP4 358.1 Mb

Number of views:
This page:352
Video files:83

M.-Ch. Kang
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $k$ be any field, $G$ be a finite group acting on the rational function field $k(x_g : g\in G)$ by $h\cdot x_g=x_{hg}$ for any $h,g\in G$. Define $k(G)=k(x_g : g\in G)^G$. Noether's problem asks whether $k(G)$ is rational ($ = $ purely transcendental) over $k$. It is known that, if $\mathbb{C}(G)$ is rational over $\mathbb{C}$, then $B_0(G)=0$ where $B_0(G)$ is the unramified Brauer group of $\mathbb{C}(G)$ over $\mathbb{C}$ investigated by Saltman and Bogomolov. Bogomolov proves that for any prime number $p$, there is a $p$-group $G$ of order $p^6$ such that $B_0(G)$ is non-trivial and therefore $\mathbb{C}(G)$ is not rational over $\mathbb{C}$. He also shows that, if $G$ is a $p$-group of order $p^5$, then $B_0(G)=0$. The latter result was disproved by Moravec for $p=3,5,7$ by the computer computing. The case for groups of order $32$ and $64$ was solved by Chu, Hu, Kang, Kunyavskii and Prokhorov. We will prove the following theorems. Theorem 1 (Hoshi, Kang and Kunyavskii). Let $p$ be any odd prime number and $G$ be a group of order $p^5$. If $G$ belongs to the isoclinism family $\Phi_{10}$ in R. James's classification of groups of order $p^5$ (“Math. Comp. 34 (1980) 613–637”), then $B_0(G)\neq 0$; in particular, $\mathbb{C}(G)$ is not rational over $\mathbb{C}$. On the other hand, if $G$ doesn't belong to the isoclinism family $\Phi_{6}$ or $\Phi_{10}$, then $B_0(G)= 0$. Theorem 2 (Chu, Hoshi, Hu and Kang). Let $G$ be a group of order $243$ with exponent $e$. Let $k$ be a field containing a primitive $e$-th root of unity. Then the followings are equivalent, (i) $k(G)$ is rational over $k$, (ii) $B_0(G)=0$, (iii) $G$ is not isomorphic to $G(243,i)$ with $28 \le i \le 30$ where $G(243,i)$ is the GAP code number for the $i$-th group of order $243$.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019