RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Birational and affine geometry"
April 26, 2012 13:00–13:50, Moscow, Steklov Mathematical Institute of RAS
 


Deformation equivalence of affine normal surfaces

H. Flenner

Ruhr-Universität Bochum, Mathematisches Institut
Video records:
Flash Video 334.0 Mb
Flash Video 2,031.9 Mb
MP4 334.0 Mb

Number of views:
This page:329
Video files:116

H. Flenner
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Two varieties $X_1$, $X_2$ over $\mathbb{C}$ are called deformation equivalent, if there is a family $(\mathcal{X}(s))_{s\in S}$ over a connected base $S$ such that $X_i=\mathcal{X}(s_i)$, $i=1,2$, for some points $s_1, s_2\in S$. If for the class of varieties considered there is a moduli space then the varieties belonging to a connected component of this moduli space form just deformation equivalent varieties. In this talk we consider deformation equivalence for the class say $\mathcal{C}$ of affine normal surfaces, which admit an $\mathbb{A}^1$-fibration. A family of surfaces in $\mathcal{C}$ consists in a completable flat morphism $p:\mathcal{V}\to S$ such that every fiber is a surface in $\mathcal{C}$. Here the morphism $p$ is called completable if it is the restriction of some proper flat map $\bar{p}\colon\bar{\mathcal{V}}\to S$ to an open subset $\mathcal{V}\subset \bar{\mathcal{V}}$ such that the boundary $\mathcal{D}=\bar{\mathcal{V}}\setminus \mathcal{V}$ is a family of normal crossing divisors with constant dual graph. We note that except for a few exceptional cases one cannot expect for this class a moduli space. We characterize in this talk as to when two surfaces in $\mathcal{C}$ are deformation equivalent. This characterization is given in purely combinatorial terms using the extended divisor of a surface with a $\mathbb{C}_+$-action. (Joint with S. Kaliman and M. Zaidenberg.)

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019