RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Birational and affine geometry"
April 27, 2012 14:30–15:20, Moscow, Steklov Mathematical Institute of RAS
 


Another view on Cox rings: Jaczewski's theorem revisited

J. A. Wisniewski

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Video records:
Flash Video 281.3 Mb
Flash Video 1,711.3 Mb
MP4 281.3 Mb

Number of views:
This page:287
Video files:65

J. A. Wisniewski
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: I will report on a joint work with Oskar Kedzierski. A generalized Euler sequence over a complete normal variety $X$ is the unique extension of the trivial bundle $V\otimes\mathcal{O}_X$ by the sheaf of differentials $\Omega_X$, given by the inclusion of a linear space $V\subset\mathrm{Ext}^1(\mathcal{O}_X,\Omega_X)$. For $\Lambda$, a lattice of Cartier divisors, let $R_{\Lambda}$ denote the corresponding sheaf associated to $V$ spanned by the first Chern classes of divisors in $\Lambda$. We prove that any projective, smooth variety on which the bundle $R_{\Lambda}$ splits into a direct sum of line bundles is toric. We describe the bundle $R_{\Lambda}$ in terms of the sheaf of differentials on the characteristic space of the Cox ring, provided it is finitely generated. Moreover, we relate the finiteness of the module of sections of $R_{\Lambda}$ and of the Cox ring of $\Lambda$.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019