RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Algebraic Structures in Integrable Systems
December 4, 2012 15:00, Moscow, M.V. Lomonosov Moscow State University
 


Algebraic anzatz for heat equation and integrable polynomial dynamical systems

V. M. Buchstaber

Steklov Mathematical Institute of the Russian Academy of Sciences
Video records:
Flash Video 1,743.8 Mb
Flash Video 350.3 Mb
MP4 350.3 Mb
Materials:
Adobe PDF 290.8 Kb

Number of views:
This page:124
Video files:32
Materials:37

V. M. Buchstaber


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: We will discuss the ansatz that reduces the heat equation to a homogeneous polynomial dynamical system. For any such system in the generic case we obtain a nonlinear ordinary differential equation and algorithm for constructing a solution of this system. As result we have the corresponding solution of the heat equation. We give the full classification of nonlinear ordinary differential equations that arise from our ansatz.
The talk is based on recent joint works with E. Yu. Bunkova. Main definitions will be given during the talk.

Materials: dubr2012beam.pdf (290.8 Kb)

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017