RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference "Geometry of Algebraic Varieties" dedicated to the memory of V. A. Iskovskikh
October 24, 2013 15:00–16:00, Moscow, Steklov Mathematical Institute of RAS
 


A proof of the geometric case of a conjecture of Grothendieck and Serre concerning principal bundles

I. A. Panin
Video records:
Flash Video 464.6 Mb
Flash Video 2,784.1 Mb
MP4 464.6 Mb

Number of views:
This page:294
Video files:106

I. A. Panin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: This talk is about our joint work with Roman Fedorov. Assume that $U$ is a regular scheme, $G$ is a reductive $U$-group scheme, and $\mathcal{G}$ is a principal $G$-bundle. It is well known that such a bundle is trivial locally in étale topology but in general not in Zariski topology. A. Grothendieck and J.-P. Serre conjectured that $\mathcal{G}$ is trivial locally in Zariski topology, if it is trivial at all the generic points.
We proved this conjecture for regular local rings $R$, containing infinite fields. Our proof was inspired by the theory of affine Grassmannians. It is also based significantly on the geometric part of a paper of the second author with A. Stavrova and N. Vavilov.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019