RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International Conference dedicated to the 60-th birthday of Boris Feigin "Representation Theory and applications to Combinatorics, Geometry and Quantum Physics"
December 13, 2013 11:30–12:20, Moscow, Independent University of Moscow
 


Representations of the Lie superalgebra $P(n)$ and Brauer algebras with signs

V. V. Serganova
Video records:
Flash Video 405.9 Mb
MP4 405.9 Mb

Number of views:
This page:253
Video files:152

V. V. Serganova


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: The “strange” Lie superalgebra $P(n)$ is the algebra of endomorphisms of an $(n|n)$-dimensional vector space $V$ equipped with a non-degenerate odd symmetric form. The centralizer of the $P(n)$-action in the $k$-th tensor power of $V$ is given by a certain analogue of the Brauer algebra.
We discuss some properties of this algebra in application to representation theory of $P(n)$ and $P(\infty)$.
We also construct a universal tensor category such that for all n the categories of $P(n)$ modules can be obtained as quotients of this category. In some sense this category is an analogue of the Deligne categories $GL(t)$ and $SO(t)$.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019