RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






Random geometry and physics
September 8, 2014 15:20, Moscow
 


Point massive particle in General Relativity

M. O. Katanaev
Video records:
Flash Video 307.5 Mb
Flash Video 1,841.9 Mb
MP4 307.5 Mb

Number of views:
This page:97
Video files:43

M. O. Katanaev


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: It is well known that the Schwarzschild solution describes the gravitational field outside compact spherically symmetric mass distribution in General Relativity. In particular, it describes the gravitational field outside a point particle. Nevertheless, what is the exact solution of Einstein's equations with delta-type source corresponding to a point particle is not known. We prove that the Schwarzschild solution in isotropic coordinates is the asymptotically flat static spherically symmetric solution of Einstein's equations with delta-type energy-momentum tensor corresponding to a point particle. Solution of Einstein's equations is understood in the generalized sense after integration with a test function. Metric components are locally integrable functions for which nonlinear Einstein's equations are mathematically defined. The Schwarzschild solution in isotropic coordinates is locally isometric to the Schwarzschild solution in Schwarzschild coordinates but differs essentially globally. It is topologically trivial neglecting the world line of a point particle. Gravity attraction at large distances is replaced by repulsion at the particle neighborhood.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017