Video Library
Most viewed videos

New in collection

You may need the following programs to see the files

Random geometry and physics
September 9, 2014 17:20–17:40, Moscow

The functional mechanics in General relativity

A. Mikhaylov
Video records:
Flash Video 113.5 Mb
Flash Video 681.5 Mb
MP4 113.5 Mb

Number of views:
This page:102
Video files:42

A. Mikhaylov

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Functional reformulation of classical mechanics was proposed by I. V. Volovich to solve the irreversibility problem of macroscopic dynamics arising in the justification of thermodynamics. Description of the microscopic state of the system by distribution function in the functional mechanics allows to include directly in the equations of dynamics the finite precision of the measurements. This report discusses the derivation of the basic equation of the functional mechanics (special form of the Liouville equation) for a material point on the $(d+1)$-dimensional space-time manifold in General relativity. The conditions of normalization of the distribution function and the formulation of the Cauchy problem, which significantly depends on the choice of the reference system, are specified. The relationship between the probability densities in different noninertial frames of reference is established by example of two-dimensional Rindler space (classical analogue of Unruh effect). The penetration under the event horizon of a Schwarzschild black hole distribution function corresponding to the solution of the Liouville equation for a freely falling particle is described, which may allow to advance in the resolution of the paradox formation of black holes.

Language: English

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018