RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Конференция памяти Анатолия Алексеевича Карацубы по теории чисел и приложениям, 2015
31 января 2015 г. 12:30, г. Москва, МГУ им. М.В.Ломоносова (главное здание), механико-математический ф-т, ауд. 16-24
 


Асимптотическое распределение алгебраических чисел на вещественной оси

Д. В. Коледа

Институт математики НАН Беларуси

Количество просмотров:
Эта страница:65

Аннотация: До недавнего времени даже для алгебраических чисел второй степени не было известно, насколько часто они попадают в произвольный промежуток в зависимости от его положения и длины.
Пусть $\mathbb{A}_n$ — множество алгебраических чисел степени $n$, а $H(\alpha)$ — обычная высота алгебраического числа $\alpha$, определяемая как высота его минимального многочлена. Вышеуказанная проблема сводится к исследованию следующей функции:
$$ \Phi_n(Q, x) := # \{ \alpha \in \mathbb{A}_n \cap \mathbb{R} : H(\alpha)\le Q, \alpha < x \}. $$
Недавно в [1], [2] была найдена точная асимптотика функции $\Phi_n(Q,x)$ при $Q\to +\infty$. При этом, фактически, была корректно определена и явно описана функция плотности алгебраических чисел на вещественной прямой. Доклад посвящён результатам [1], [2] о распределении вещественных алгебраических чисел.
[1] Каляда Д.У. Аб размеркаваннi рэчаiсных алгебраiчных лiкаў дадзенай ступенi. — Доклады НАН Беларуси. — 2012. — Т. 56, № 3. — С. 28–33.
[2] Коледа Д.В. О распределении действительных алгебраических чисел второй степени. — Весцi НАН Беларусi. Сер. фiз-мат. навук. — 2013. — № 3. — С. 54–63.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017