RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2015
23 июля 2015 г. 12:45, г. Дубна, дом отдыха «Ратмино»
 


Числа Гурвица. Занятие 2

Б. С. Бычков, К. Р. Ступаков
Материалы:
Adobe PDF 112.5 Kb

Количество просмотров:
Эта страница:38
Материалы:24

Аннотация: Зададимся тремя «почти школьными» вопросами:
  • Сколько существует различных деревьев на $n$ пронумерованных вершинах?
  • Сколькими способами можно разложить цикл длины $n$ в произведение $(n-1)$ транспозиции?
  • Критическое значение – значение в точке, производная в которой обращается в ноль. Сколько существует многочленов степени $n$ (со старшим коэффициентом $1$ и следующим за ним, равным $0$) с заданными $(n-1)$ критическим значением?

Связь между этими задачами, по-видимому впервые, обнаружил в конце XIX века немецкий математик Адольф Гурвиц. По очереди разбираясь в этих трёх проблемах, мы затронем начала топологии – такие важные понятия, как петли и их гомотопии, разветвлённые накрытия и многое другое. Мы выясним, почему на многочлен от комплексной переменной можно смотреть как на разветвленное накрытие сферы собой, и это позволит перейти от третьего вопроса к первым двум. Если останется время мы обсудим другие важные и интересные объекты, связанные с этими задачами, такие как пространства модулей кривых.
Мы надеемся, что курс будет доступен как студентам, так и школьникам. Полезно знать, что такое комплексные числа, но и это постараемся напомнить.

Материалы: bychkov_stupakov_ex1.pdf (112.5 Kb)

Website: http://www.mccme.ru/dubna/2015/courses/bychkov-stupakov.html
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017