RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Конференция «Categorical and analytic invariants in Algebraic geometry 1»
16 сентября 2015 г. 11:50, г. Москва, МИАН
 


From Riemann to Feynman geometry in Feynman approach to QFT

A. S. Losev
Видеозаписи:
MP4 1,643.2 Mb
MP4 416.8 Mb

Количество просмотров:
Эта страница:235
Видеофайлы:148

A. S. Losev


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: In the Feynmann approach to QFT correlators are given as an integrals over the space of fields. Since the space of fields is infinite-dimensional the integral has no mathematical sense, and in practical applications this definition is accompanied by the special rules of computation of the integral. These rules (called renormalization procedures) differ from theory to theory, and people are not even trying to prove that different rules lead to equivalent definitions.
We propose the following radical change of the situation. The Riemannian geometry with infinite-dimensional space of fields should be replaced by so-called Feymnan geometry where the space is replaced by an A-infinity structure that is either finite dimensional(strong Feymnan geometry) or infinite-dimensional with operations belong to the trace-class (weekly Feynman) geometry. We give an example of such geometries: lattice A-infinity geometry and noncommutative fuzzy geometry as examples of strongly Feynmann geometries, and Costello A-infinity geometry as an example of weekly Feynman geometry, and discuss a program of reformulation of QFT, in which standard infinite dimensional integral should be replaced by a limit of the existing integrals over fields in Feynman geometries.
Joint work with Sen Hu, USTC

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017