RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2010
19 июля 2010 г. 17:00, г. Дубна
 


Целые точки в выпуклых многогранниках. Лекция 1

Г. Ю. Панина
Видеозаписи:
Windows Media 489.1 Mb
Flash Video 818.7 Mb
MP4 818.7 Mb

Количество просмотров:
Эта страница:1084
Видеофайлы:481

Г. Ю. Панина


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике.
1. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона (1988) — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов (2009).
2. Число целых точек в выпуклом многограннике ведёт себя как полином. На плоскости это следует из теоремы Пика. В старших размерностях для доказательства этого факта понадобится элегантная комбинация оператора Тодда (1937) и разложения Грама–Брианшона (1837).
3. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. (А если хочется подставить отрицательные? Кто в детстве не пытался делить на ноль?) Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники (1992).
4. Двойственность Эрхарта (1962) и её естественное обобщение (1992).
5. Секрет фокуса Бриона.
У слушателей не предполагается никаких специальных предварительных знаний.
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017