RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






III международная конференция «Квантовая топология»
23 июня 2016 г. 14:00, г. Москва, МИАН
 


Self-intersection of curves in surfaces and Drinfeld associators

Gwénaël Massuyeau
Видеозаписи:
Flash Video 317.6 Mb
Flash Video 1,893.0 Mb
MP4 317.6 Mb

Количество просмотров:
Эта страница:184
Видеофайлы:47

Gwénaël Massuyeau
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Turaev introduced in the seventies two fundamental operations on the algebra $\mathbb{Q}[\pi]$ of the fundamental group $\pi$ of a surface with boundary [1]. The first operation is binary and measures the intersection of two oriented curves on the surface, while the second operation is unary and computes the self-intersection of an oriented curve. It is already known that Turaev's intersection pairing has a simple algebraic description when the $I$-adic completion of the group algebra $\mathbb{Q}[\pi]$ is appropriately identified to the degree-completion of the tensor algebra $T(H)$ of $H:=H_1(\pi;\mathbb{Q})$.
We will show that Turaev's self-intersection map has a similar description in the case of a disk with $p$ punctures. In this special case, we will consider those identifications between the completions of $\mathbb{Q}[\pi]$ and $T(H)$ that arise from the Kontsevich integral by embedding $\pi$ into the pure braid group on $(p+1)$ strands [2, 3]. As a matter of fact, our algebraic description involves a formal power series which is explicitly determined by the Drinfeld associator $\Phi$ entering into the definition of the Kontsevich integral; this series is essentially Enriquez' $\Gamma$-function of $\Phi$ [4]. If time allows, we will also discuss the case of higher-genus surfaces. (This talk is based on the preprint [5].)
References:
  • V. Turaev, Intersections of loops in two-dimensional manifolds. (Russian) Mat. Sb. 106(148) (1978), no. 4, 566–588. English translation: Math. USSR–Sb. 35 (1979), 229–250.
  • N. Habegger, G. Masbaum, The Kontsevich integral and Milnor's invariants. Topology 39 (2000), no. 6, 1253–1289.
  • A. Alekseev, B. Enriquez, C. Torossian, Drinfeld associators, braid groups and explicit solutions of the Kashiwara–Vergne equations. Publ. Math. Inst. Hautes Études Sci. 112 (2010), 143–189.
  • B. Enriquez, On the Drinfeld generators of $\mathfrak{grt}_1(\mathbf{k})$ and $\Gamma$-functions for associators. Math. Res. Lett. 3 (2006), no. 2-3, 231–243.
  • G. Massuyeau, Formal descriptions of Turaev's loop operations. Preprint (2015), arXiv:1511.03974.


Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017