RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






III международная конференция «Квантовая топология»
24 июня 2016 г. 14:00, г. Москва, МИАН
 


Stable maps and branched shadows of 3-manifolds

Masaharu Ishikawa
Видеозаписи:
Flash Video 311.7 Mb
Flash Video 1,858.5 Mb
MP4 311.7 Mb

Количество просмотров:
Эта страница:99
Видеофайлы:33

Masaharu Ishikawa
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: As used in a paper of Costantino and D. Thurston, Turaev's shadow can be regarded locally as the Stein factorization of a stable map. In [1], we introduced the notion of stable map complexity for a compact orientable 3-manifold bounded by (possibly empty) tori counting, with some weights, the minimal number of singular fibers of codimension 2 of stable maps into the real plane, and proved that this number equals its branched shadow complexity. In consequence, we see that the hyperbolic volume is bounded from above and below by the stable map complexity, which is a direct corollary of an observation of Costantino and Thurston and an inequality obtained by Futer, Kalfagianni and Purcell.
This is a joint work with Yuya Koda in Hiroshima University. Partially supported by the Grant-in-Aid for Scientific Research (C), JSPS KAKENHI Grant Number 16K05140.
References:
  • M. Ishikawa, Y. Koda, Stable maps and branched shadows of 3-manifolds. arXiv:math/1403.0596.


Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017