RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Математическая логика, алгебра и вычислимость: двухдневная конференция, посвященная 85-летию С. И. Адяна
18 июля 2016 г. 11:00, г. Москва, МИАН, ул. Губкина, 8
 


Периодические произведения групп

В. С. Атабекян
Видеозаписи:
Flash Video 242.9 Mb
Flash Video 1,447.5 Mb
MP4 242.9 Mb

Количество просмотров:
Эта страница:203
Видеофайлы:67

В. С. Атабекян
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В докладе будут представлены некоторые вполне конкретные свойства, которые однозначно характеризуют $n$-периодические произведения групп, введенные С. И. Адяном в 1976 г. С использованием этих свойств полученные ранее ряд результатов о свободных бернсайдовых группа $B(m,n)$ можно усилить и распространить на $n$-периодические произведения разных семейств групп. Например, если некоторая нециклическая подгруппа $H$ $n$-периодического произведения данного семейства групп не сопряжена никакой подгруппе компонент этого произведения, то в $H$ содержится подгруппа, изоморфная свободной бернсайдовой группе бесконечного ранга $B(\infty,n)$. Если при этом подгруппа $H$ конечно порождена, то она равномерно неаменабельна. Описываются также конечные подгруппы $n$-периодических произведений. Выяснилось, что $n$-периодические произведения многих семейств групп являются $C^*$-простыми, хопфовыми и т.д. Доклад основан на совместных работах Сергея Ивановича Адяна и докладчика.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017